Atomistic Energetics and Critical Twinning Stress Prediction in Face and Body Centered Cubic Metals: Recent Progress

Author(s):  
Piyas Chowdhury ◽  
Huseyin Sehitoglu

This paper recounts recent advances on the atomistic modeling of twinning in body-centered cubic (bcc) and face-centered cubic (fcc) alloy. Specifically, we have reviewed: (i) the experimental evidence of twinning-dominated deformation in single- and multi-grain microstructures, (ii) calculation of generalized planar fault energy (GPFE) landscapes, and (iii) the prediction of critical friction stresses to initiate twinning-governed plasticity (e.g., twin nucleation, twin–slip and twin–twin interactions). Possible avenues for further research are outlined.

Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


ACS Nano ◽  
2018 ◽  
Vol 12 (7) ◽  
pp. 7246-7252 ◽  
Author(s):  
Dhani Nafday ◽  
Subhrangsu Sarkar ◽  
Pushan Ayyub ◽  
Tanusri Saha-Dasgupta

2011 ◽  
Vol 64 (7) ◽  
pp. 605-608 ◽  
Author(s):  
Z.H. Jin ◽  
S.T. Dunham ◽  
H. Gleiter ◽  
H. Hahn ◽  
P. Gumbsch

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miaomiao Jin ◽  
Yipeng Gao ◽  
Yongfeng Zhang ◽  
Chao Jiang ◽  
Jian Gan

AbstractMaterials performance can be significantly degraded due to bubble generation. In this work, the bubble growth process is elaborated in Cu by atomistic modeling to bridge the gap of experimental observations. Upon continuous He implantation, bubble growth is accommodated first by nucleation of dislocation network from bubble surface, then formation of dissociated prismatic dislocation loop (DPDL), and final DPDL emission in $$\langle 110\rangle$$ ⟨ 110 ⟩ directions. As the DPDL is found capable of collecting He atoms, this process is likely to assist the formation of self-organized bubble superlattice, which has been reported from experiments. Moreover, the pressurized bubble in solid state manifests the shape of an imperfect octahedron, built by Cu $$\{111\}$$ { 111 } surfaces, consistent with experiments. These atomistic details integrating experimental work fill the gap of mechanistic understanding of athermal bubble growth in Cu. Importantly, by associating with nanoindentation testings, DPDL punching by bubble growth arguably applies to various FCC (face-centered cubic) metals such as Au, Ag, Ni, and Al.


Sign in / Sign up

Export Citation Format

Share Document