scholarly journals Dissociated prismatic loop punching by bubble growth in FCC metals

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miaomiao Jin ◽  
Yipeng Gao ◽  
Yongfeng Zhang ◽  
Chao Jiang ◽  
Jian Gan

AbstractMaterials performance can be significantly degraded due to bubble generation. In this work, the bubble growth process is elaborated in Cu by atomistic modeling to bridge the gap of experimental observations. Upon continuous He implantation, bubble growth is accommodated first by nucleation of dislocation network from bubble surface, then formation of dissociated prismatic dislocation loop (DPDL), and final DPDL emission in $$\langle 110\rangle$$ ⟨ 110 ⟩ directions. As the DPDL is found capable of collecting He atoms, this process is likely to assist the formation of self-organized bubble superlattice, which has been reported from experiments. Moreover, the pressurized bubble in solid state manifests the shape of an imperfect octahedron, built by Cu $$\{111\}$$ { 111 } surfaces, consistent with experiments. These atomistic details integrating experimental work fill the gap of mechanistic understanding of athermal bubble growth in Cu. Importantly, by associating with nanoindentation testings, DPDL punching by bubble growth arguably applies to various FCC (face-centered cubic) metals such as Au, Ag, Ni, and Al.

Author(s):  
Piyas Chowdhury ◽  
Huseyin Sehitoglu

This paper recounts recent advances on the atomistic modeling of twinning in body-centered cubic (bcc) and face-centered cubic (fcc) alloy. Specifically, we have reviewed: (i) the experimental evidence of twinning-dominated deformation in single- and multi-grain microstructures, (ii) calculation of generalized planar fault energy (GPFE) landscapes, and (iii) the prediction of critical friction stresses to initiate twinning-governed plasticity (e.g., twin nucleation, twin–slip and twin–twin interactions). Possible avenues for further research are outlined.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

2013 ◽  
Vol 58 (1) ◽  
pp. 145-150 ◽  
Author(s):  
H. Paul ◽  
P. Uliasz ◽  
M. Miszczyk ◽  
W. Skuza ◽  
T. Knych

The crystal lattice rotations induced by shear bands formation have been examined in order to investigate the influence of grain boundaries on slip propagation and the resulting texture evolution. The issue was analysed on Al-0.23wt.%Zr alloy as a representative of face centered cubic metals with medium-to-high stacking fault energy. After solidification, the microstructure of the alloy was composed of flat, twin-oriented, large grains. The samples were cut-off from the as-cast ingot in such a way that the twinning planes were situated almost parallel to the compression plane. The samples were then deformed at 77K in channel-die up to strains of 0.69. To correlate the substructure with the slip patterns, the deformed specimens were examined by SEM equipped with a field emission gun and electron backscattered diffraction facilities. Microtexture measurements showed that strictly defined crystal lattice re-orientations occurred in the sample volumes situated within the area of the broad macroscopic shear bands (MSB), although the grains initially had quite different crystallographic orientations. Independently of the grain orientation, their crystal lattice rotated in such a way that one of the f111g slip planes became nearly parallel to the plane of maximum shear. This facilitates the slip propagation across the grain boundaries along the shear direction without any visible variation in the slip plane. A natural consequence of this rotation is the formation of specific MSB microtextures which facilitates slip propagation across grain boundaries.


2004 ◽  
Vol 96 (8) ◽  
pp. 4288-4292 ◽  
Author(s):  
C. Borchers ◽  
F. Gärtner ◽  
T. Stoltenhoff ◽  
H. Kreye

2010 ◽  
Vol 58 (6) ◽  
pp. 2262-2270 ◽  
Author(s):  
J. Wang ◽  
N. Li ◽  
O. Anderoglu ◽  
X. Zhang ◽  
A. Misra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document