Seismic Vulnerability Assessment of Fuel Storage Tanks in Italy

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Valerio De Biagi ◽  
Bernardino Chiaia ◽  
Luca Fiorentini ◽  
Cristina Zannini Quirini

Seismic hazard represents one of the possible triggering causes for NaTech accidents in refineries and production plants. The vulnerability of steel storage tanks was evaluated within the framework of a rapid risk assessment. Tanks dataset is composed of 70 refinery items in located in various parts of Italy and the seismic calculations are performed in accordance to API 650 Annex E Standard. The paper summarizes the results of the investigation through two normalized parameters related to the masses and to the seismic load. Some trends in the solution are highlighted. The empirical fragility curve obtained from the analysis is compared with similar curves found in the literature and the resulting similarities (and dissimilarities) are critically discussed.

2021 ◽  
Vol 27 (8) ◽  
pp. 59-79
Author(s):  
Zina A. Abduljaleel ◽  
Bahman Omer Taha ◽  
Abdulhameed Abdullah Yaseen

Collapsing building structures during recent earthquakes, especially in Northern and Eastern Kurdistan, including the 2003 earthquake in Cewlig; the 2011 earthquake in Van; and the 2017 earthquake near Halabja province, has raised several concerns about the safety of pre-seismic code buildings and emergency facilities in Erbil city. The seismic vulnerability assessment of the hospital buildings as emergency facilities is one of the necessities which have a critical role in the recovery period following earthquakes. This research aims to study in detail and to extend the present knowledge about the seismic vulnerability of the Rizgary public hospital building in Erbil city, which was constructed before releasing the seismic provisions in the region.  ETABS software is employed to conduct Eigenvalue analyses, nonlinear static analyses, and about 120 incremental dynamic analyses; furthermore, the actual response of the hospital building is evaluated by considering possible irregularities in both directions and the effect of seismic pounding. The outcomes of the research indicate that the hospital building is in poor performance under anticipated earthquakes. In addition, the existing combination of irregularities and seismic pounding in the model increases the vulnerability under the seismic load. A suitable strengthening strategy is also recommended.


Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Van My Nguyen ◽  
Phuong Hoa Hoang

Abstract This paper aims to comprehensively evaluate the performance of a series of ground motion intensity measures (IMs) used in the seismic vulnerability assessment of steel storage tanks with unanchored support conditions. Sixteen well-known IMs are thus selected, which are classified into amplitude-, frequency-, and time-based categories. A comparative study is then performed on four different unanchored steel storage tanks subjected to a suite of 140 ground motion records that is comprised of seven different bins of records with different hazard levels. In this regard, the tanks are appropriately modeled based on a simplified approach, whose uplift and sliding nonlinear behaviors are properly implemented based on a three-dimensional nonlinear pushover analysis of the tanks. Four characteristics of the examined IMs including efficiency, practicality, proficiency, and sufficiency are evaluated based on a probabilistic seismic demand model of two critical failure modes of the tanks, i.e., plastic rotation of the shell-to-bottom connection and elephant's foot buckling of the shell plate. According to the comparative study, frequency-based IMs demonstrate their superior performance for all criteria compared with other groups; in particular, the average spectral acceleration gains the highest ranking. Finally, an appropriate range of the upper period considered in the average spectral acceleration IM is then proposed to optimize the efficiency of this IM for the examined tanks.


2017 ◽  
Vol 12 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Gian Paolo Campostrini ◽  
Sabrina Taffarel ◽  
Giulia Bettiol ◽  
Maria Rosa Valluzzi ◽  
Francesca Da Porto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document