Nucleate Boiling Comparison between Teflon-Coated Plain Copper and Cu-HTCMC in Water

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Seongchul Jun ◽  
Jin Sub Kim ◽  
Jungho Lee ◽  
Seung M. You

The hydrophobic, Teflon-coated surfaces on plain copper and Cu-HTCMC (High temperature Thermally Conductive Microporous Coating) compared on pool boiling heat transfer of water. The HTCMC was created by sintering of copper powders with the average particle size of 67 µm and about 300 µm coating thickness that showed a good boiling heat transfer and the CHF enhancement from the previous study at saturation of water [1]. The Teflon-coated surfaces were created by coating of Amorphous Fluoroplastic (AF) 2400 resin on both plain copper and Cu-HTCMC. The static angles of both surfaces showed hydrophobic as about 120-130°. The departure bubble sizes created by merged bubbles of both surfaces are comparable as about 7 mm at 5 kW/m2 and the sizes are increased as heat flux increases. However, unlike to the plain surface, the smaller bubbles on Cu-HTCMC are not observed at the heat flux of 5 kW/m2 because the number of nucleation sites created in the porous structure are huge smaller bubbles are merged as soon as they grow from pores. As heat flux reaches the surfaces are covered by vapor film and reached the critical heat flux (CHF) at much lower heat fluxes compared to hydrophilic surfaces but the CHF values of Teflon-coated Cu-HTCMC is 640 kW/m2 and the value is more than tenfold higher than that of Teflon-coated plain copper.

2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Seongchul Jun ◽  
Hyoseong Wi ◽  
Ajay Gurung ◽  
Miguel Amaya ◽  
Seung M. You

A novel, high-temperature, thermally conductive, microporous coating (HTCMC) is developed by brazing copper particles onto a copper surface. This coating is more durable than many previous microporous coatings and also effectively creates re-entrant cavities by varying brazing conditions. A parametric study of coating thicknesses of 49–283 μm with an average particle size of ∼25 μm was conducted using the HTCMC coating to understand nucleate boiling heat transfer (NBHT) enhancement on porous surfaces. It was found that there are three porous coating regimes according to their thicknesses. The first regime is “microporous” in which both NBHT and critical heat flux (CHF) enhancements gradually grow as the coating thickness increases. The second regime is “microporous-to-porous transition” where NBHT is further enhanced at lower heat fluxes but decreases at higher heat fluxes for increasing thickness. CHF in this regime continues to increase as the coating thickness increases. The last regime is named “porous,” and both NBHT and CHF decrease as the coating thickness increases beyond that of the other two regimes. The maximum NBHT coefficient observed was ∼350,000 W/m2K at 96 μm thickness (microporous regime) and the maximum CHF observed was ∼2.1 MW/m2 at ∼225 μm thickness (porous regime).


Author(s):  
Seongchul Jun ◽  
Hyoseong Wi ◽  
Ajay Gurung ◽  
Miguel Amaya ◽  
Seung M. You

A novel, high-temperature, thermally-conductive, microporous coating (HTCMC) is developed by brazing copper particles onto a copper surface. This coating is more durable than many previous microporous coatings and also effectively creates reentrant cavities by optimizing brazing conditions. A parametric study of coating thicknesses of 49–283 μm with an average particle size of ∼25 μm was conducted using the HTCMC coating to understand nucleate boiling heat transfer (NBHT) enhancement on porous surfaces. It was found that there are three porous coating regimes according to their thicknesses. The first regime is “microporous” in which both NBHT and critical heat flux (CHF) enhancements gradually grow as the coating thickness increases. The second regime is “microporous-to-porous transition” where NBHT is further enhanced at lower heat fluxes but decreases at higher heat fluxes for increasing thickness. CHF in this regime continues to increase as the coating thickness increases. The last regime is named as “porous”, and both NBHT and CHF decrease as the coating thickness increases further than that of the other two regimes. The maximum nucleate boiling heat transfer coefficient observed was ∼350,000 W/m2K at 96 μm thickness (“microporous” regime) and the maximum CHF observed was ∼2.1 MW/m2 at ∼225 μm thickness (“porous” regime).


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Seongchul Jun ◽  
Jinsub Kim ◽  
Seung M. You ◽  
Hwan Yeol Kim

The subcooling effect on pool boiling heat transfer using a copper microporous coating was experimentally studied in water for subcoolings of 10 K, 20 K, and 30 K at atmospheric pressure and compared to that of a plain copper surface. A high-temperature thermally conductive microporous coating (HTCMC) was made by sintering copper powder with an average particle size of 67 μm onto a 1 cm × 1 cm plain copper surface with a coating thickness of ~300 μm. The HTCMC surface showed a two times higher critical heat flux (CHF), ~2,000 kW/m2, and up to seven times higher nucleate boiling heat transfer (NBHT) coefficient, ~350 kW/m2K, when compared with a plain copper surface at saturation. The results of the subcooling effect on pool boiling showed that the NBHT of both the HTCMC and the plain copper surface did not change much with subcooling. On the other hand, the CHF increased linearly with the degree of subcooling for both the HTCMC and the plain copper surface. The increase in the CHF was measured to be ~60 kW/m2for every degree of subcooling for both the HTCMC and the plain surface, so that the difference of the CHF between the HTCMC and the plain copper surface was maintained at ~1,000 kW/m2throughout the tested subcooling range. The CHFs for the HTCMC and the plain copper surface at 30 K subcooling were 3,820 kW/m2and 2,820 kW/m2, respectively. The experimental results were compared with existing CHF correlations and appeared to match well with Zuber’s formula for the plain surface. The combined effect of subcooling and orientation of the HTCMC on pool boiling heat transfer was studied as well.


2014 ◽  
Vol 592-594 ◽  
pp. 1601-1606 ◽  
Author(s):  
Sameer Sheshrao Gajghate ◽  
Anil R. Aacharya ◽  
Anil T. Pise ◽  
Ganesh S. Jadhav

The addition of additives to the water is known to enhance boiling heat transfer. In the present investigation, boiling heat transfer coefficients are measured for Nichrome wire, immersed in saturated water with & without additive. An additive used is 2-Ethyl 1-Hexanol with varying concentrations in the range of 10-10000 ppm. Extensive experimentation of pool boiling is carried out above the critical heat flux. Boiling behavior i.e. bubble dynamics are observed at higher heat flux for nucleate boiling of water over wide ranges of concentration of additive in water. Results are encouraging and show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient considerably higher, and that there is an optimum additive (500-1000ppm) concentration for higher heat fluxes. An optimum level of enhancement is observed up to a certain amount of additive 500-1000ppm in the tested range. Thereafter significant enhancement is not observed. This enhancement may be due to change in thermo-physical properties i.e. mainly due to a reduction in surface tension of water in the presence of additive.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Seongchul Juna ◽  
Jinsub Kima ◽  
Hwan Yeol Kimb ◽  
Seung M. Youa

The growth of hovering bubbles on Copper, High-Temperature Thermally-Conductive Microporous Coating (Cu-HTCMC) and plain surface were compared at 1,000 kW/m2 in nucleate boiling with different subcoolings. Images obtained by a high speed camera operating at 2,000 frames per second were used. The Cu-HTCMC was created by sintering copper powders with the average particle size of 67 μm and ∼300 μm thickness, which showed the optimized nucleate boiling and critical heat flux enhancement. The hovering bubble size became smaller as subcooling increased for both Cu-HTCMC and plain surface due to condensation by surrounding subcooled water. At 30 K subcooling, big hovering bubbles disappeared on both surfaces. Small bubbles were shown on plain surface and mists were shown on Cu-HTCMC surface. The hovering bubble sizes were close and the growth times were comparable for both surfaces in saturated and 10 K subcooling cases. However, the bubbles on Cu-HTCMC surface were smaller than those of plain surface at 20 K and 30 K subcoolings. This is believed to be due to the microporous structures shown in the SEM image (top left figure). The heat transfer coefficients of Cu-HTCMC were ∼300 kW/m2K for various subcoolings, about 6 times higher than those of plain surface (top right figure). The figure indicates slightly increasing trend of the heat transfer coefficient with subcooling. This is believed to be the result of the disappearance of relatively big size bubbles in Cu-HTCMC case.


Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


2019 ◽  
Vol 20 (7) ◽  
pp. 701
Author(s):  
Lidia Dąbek ◽  
Andrej Kapjor ◽  
Łukasz J. Orman

The article deals with the problem of pool boiling heat transfer enhancement on metal wire mesh coatings made of copper and phosphor bronze at nucleate boiling of distilled water and high purity ethyl alcohol under ambient pressure. The tests have been performed on horizontal samples containing different microstructures produced with the sintering technology. The samples were attached to the heating block with soldering. As a result of the experiments, boiling curves were obtained, describing the relationship between the dissipated heat flux and the superheat values for each specimen. A considerable augmentation of heat flux has been recorded for the meshed surfaces in relation to the smooth reference surface without any coating. Generally, the highest enhancement was recorded for the low superheat values. The presented test results have been discussed and then compared with selected correlations available in literature for nucleate boiling heat transfer on microstructure coated surfaces.


1992 ◽  
Vol 114 (2) ◽  
pp. 425-433 ◽  
Author(s):  
P. J. Marto ◽  
C. L. Anderson

Heat transfer measurements were made during nucleate boiling of R-113 from a bundle of 15 electrically heated, smooth copper tubes arranged in an equilateral triangular pitch. The bundle was designed to simulate a portion of a refrigeration system flooded-tube evaporator. The outside diameter of the tubes was 15.9 mm, and the tube pitch was 19.1 mm. Five of the tubes that were oriented in a vertical array on the centerline of the bundle were each instrumented with six wall thermocouples to obtain an average wall temperature and a resultant average heat transfer coefficient. All tests were performed at atmospheric pressure. The majority of the data were obtained with increasing heat flux to study the onset of nucleate boiling and the influence of surface “history” upon boiling heat transfer. Data taken during increasing heat flux showed that incipient boiling was dependent upon the number of tubes in operation. The operation of lower tubes in the bundle decreased the incipient boiling heat flux and wall superheat of the upper tubes, and generally increased the boiling heat transfer coefficients of the upper tubes at low heat fluxes where natural convection effects are important. The boiling data confirmed that the average heat transfer coefficient for a smooth-tube bundle is larger than obtained for a single tube.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Abdolali Khalili Sadaghiani ◽  
Ahmad Reza Motezakker ◽  
Alsan Volkan Özpınar ◽  
Gözde Özaydın İnce ◽  
Ali Koşar

New requirements for heat exchangers offered pool boiling heat transfer on structured and coated surfaces as one of the promising methods for effective heat removal. In this study, pool boiling experiments were conducted on polyhydroxyethylmethacrylate (pHEMA)-coated surfaces to investigate the effect of surface orientation on bubble dynamics and nucleate boiling heat transfer. pHEMA coatings with thicknesses of 50, 100, and 200 nm were deposited using the initiated chemical deposition (iCVD) method. De-ionized water was used as the working fluid. Experiments were performed on horizontal and inclined surfaces (inclination angles of 10 deg, 30 deg, 50 deg, and 70 deg) under the constant heat flux (ranging from 10 to 80 kW/m2) boundary condition. Obtained results were compared to their plain surface counterparts, and heat transfer enhancements were observed. Accordingly, it was observed that the bubble departure phenomenon was affected by heat flux and wall superheat on bare silicon surfaces, while the supply path of vapor altered the bubble departure process on pHEMA-coated surfaces. Furthermore, the surface orientation played a major role on bubble dynamics and could be considered as a mechanism for fast vapor removal from surfaces. Bubble coalescence and liquid replenishment on coated surfaces had a promising effect on heat transfer coefficient enhancement on coated surfaces. For horizontal surfaces, a maximum enhancement of 25% relative to the bare surface was achieved, while the maximum enhancement was 105% for the inclined coated surface under the optimum condition. iCVD was proven to be a practical method for coating surfaces for boiling heat transfer applications due to the obtained promising results.


Author(s):  
R. Hosseini ◽  
A. Gholaminejad ◽  
Mahdi Nabil ◽  
Mohammad Hossein Samadinia

This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizontal circular plates of brass, copper and aluminum. The heat transfer coefficient was evaluated by measuring wall superheat and effective heat flux removed by boiling. The experiments were carried out in the heat flux range of 8 to 200kW/m2. The obtained results have shown significant effect of surface material, with copper providing the highest heat transfer coefficient among the samples, and aluminum the least. There was negligible difference at low heat fluxes, but copper showed 23% better performance at high heat fluxes than aluminum and 18% better than brass.


Sign in / Sign up

Export Citation Format

Share Document