scholarly journals Additive Manufacturing of Structural Cores and Washout Tooling for Autoclave Curing of Hybrid Composite Structures

Author(s):  
Daniel-Alexander Türk ◽  
Andreas Ebnöther ◽  
Markus Zogg ◽  
Mirko Meboldt

This paper presents a study combining additive manufactured (AM) elements with carbon fiber-reinforced polymers (CFRP) for the autoclave curing of complex-shaped, lightweight structures. Two approaches were developed: First, structural cores were produced with AM, over-laminated with CFRP, and co-cured in the autoclave. Second, a functional hull is produced with AM, filled with a temperature- and pressure-resistant material, and over-laminated with CFRP. After curing, the filler-material is removed to obtain a hollow lightweight structure. The approaches were applied to hat stiffeners, which were modeled, fabricated, and tested in three-point bending. Results show weight savings by up to 5% compared to a foam core reference. Moreover, the AM element contributes to the mechanical performance of the hat stiffener, which is highlighted by an increase in the specific bending stiffness and the first failure load by up to 18% and 310%. Results indicate that the approaches are appropriate for composite structures with complex geometries.

2021 ◽  
Vol 63 (2) ◽  
pp. 131-137
Author(s):  
Mário Santos ◽  
Jaime Santos ◽  
Paulo Reis ◽  
Ana Amaro

Abstract In the present work, different ultrasonic C-scan approaches were used to evaluate Carbon Fiber Reinforced Polymers (CFRP) submitted to impacts of low energy, in order to evaluate their effectiveness for the detection and characterization of small defects. In particular, as to the question how useful could be the air-coupled C-scan approach, using low frequencies, for in-service application. For that goal, several samples with different stacking sequences and thicknesses were impacted with 1.5 and 3 J. Then, ultrasonic C-scan images were produced by immersion pulse-echo (in amplitude and time-of-flight (TOF)) and immersion through-transmission, and also by air-coupling through-transmission. The immersion C-scan images were produced using 5, 10 and 20 MHz probes and the air-coupled C-scan was made using two 400 kHz probes. The obtained images for the considered samples show that all used methods are able to detect the defects and give acceptable information about their size and shape. However, if the way of delamination evolving over thickness is of interest, the images by TOF should be used. As expected, good image resolution with sharp contour defects require high frequencies. Nevertheless, the air-coupled C-scan demonstrated similar capabilities to detect defects, with the advantage that the coupling medium is air, thus widening the range of applications, such as real-time damage monitoring of composite structures. As a disadvantage, the air C-scan system requires high power emission signals, and also great amplification of the received signals, to face the considerable attenuation in the air.


2014 ◽  
Vol 891-892 ◽  
pp. 1597-1602 ◽  
Author(s):  
Nabil Chowdhury ◽  
Wing Kong Chiu ◽  
John Wang

A review of some of the various fatigue models introduced over the years for both metallic materials, in particular aluminium alloys followed by fatigue and durability concerns associated with composite materials. The move towards light weight and high stiffness structures that have good fatigue durability and corrosion resistance has led to the rapid move from metal structures to composite structures. With this brings the added concern of certifying new components as the damage mechanisms and failure modes in metals differ significantly than composite materials such as carbon fiber reinforced polymers (CFRP). The certification philosophy for composites must meet the same structural integrity, safety and durability requirements as that of metals. Hence this is where the challenge now lies. Substantial work has been conducted in the reparability of composite structures through bonding using various adherend thicknesses and joint types and has been shown to have higher durability than mechanically fastened repairs for thin adherends however these are currently unacceptable repair methods as they cannot be certified. Repairs are designed on the basis that the repair efficiency can be predicted and should be designed conservatively with respect to the various failure modes and include the surrounding structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. A. Khawaja ◽  
T. A. Bertelsen ◽  
R. Andreassen ◽  
M. Moatamedi

The paper gives the study of the response of carbon fiber reinforced polymers (CRFP) quasi-isotropic shell structures under the influence of dynamic loading. The quasi-isotropic CRFP shell specimens are fabricated using Multipreg E720 laminates. These laminates are laid in such a way that shell structure has equal strength and mechanical properties in the two-dimensional (2D) plane and hence can be regarded as quasi-isotropic. In this study, the dynamic loading is generated using shock waves in a shock tube experimental setup. The strain and pressure data is collected from the experiments. Additional tests are carried out using Material Test System (MTS) for both tensile and flexural response of CRFP. Results obtained from experiments are compared with numerical simulations using ANSYS Multiphysics 14.0 finite element method (FEM) package. The numerical simulation and experimental results are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document