Reliability-Based Design Optimization of Microstructures With Analytical Formulation

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Pinar Acar

Microstructures are stochastic by their nature. These aleatoric uncertainties can alter the expected material performance substantially and thus they must be considered when designing materials. One safe approach would be assuming the worst case scenario of uncertainties in design. However, design under the worst case conditions can lead to over-conservative solutions that provide less effective material properties. Here, a more powerful design approach can be developed by implementing reliability constraints into the optimization problem to achieve superior material properties while satisfying the prescribed design criteria. This is known as reliability-based design optimization (RBDO), and it has not been studied for microstructure design before. In this work, an analytical formulation that models the propagation of microstructural uncertainties to the material properties is utilized to compute the probability of failure. Next, the analytical uncertainty solution is integrated into the optimization problem to define the reliability constraints. The presented optimization under uncertainty scheme is exercised to maximize the yield stress of α-Titanium and magnetostriction of Galfenol, respectively.

2020 ◽  
Vol 10 (17) ◽  
pp. 5748
Author(s):  
Suwin Sleesongsom ◽  
Sujin Bureerat

Reliability-based design optimization (RBDO) of a mechanism is normally based on the non-probabilistic model, which is viewed as failure possibility constraints in each optimization loop. It leads to a double-loop nested problem that causes a computationally expensive evaluation. Several methods have been developed to solve the problem, which are expected to increase the realization of optimum results and computational efficiency. The purpose of this paper was to develop a new technique of RBDO that can reduce the complexity of the double-loop nested problem to a single-loop. This involves using a multi-objective evolutionary technique combined with the worst-case scenario and fuzzy sets, known as a multi-objective, reliability-based design optimization (MORBDO). The optimization test problem and a steering linkage design were used to validate the performance of the proposed technique. The proposed technique can reduce the complexity of the design problem, producing results that are more conservative and realizable.


Author(s):  
Yoshihiro Kanno

AbstractThis study considers structural optimization under a reliability constraint, in which the input distribution is only partially known. Specifically, when it is only known that the expected value vector and the variance-covariance matrix of the input distribution belong to a given convex set, it is required that the failure probability of a structure should be no greater than a specified target value for any realization of the input distribution. We demonstrate that this distributionally-robust reliability constraint can be reduced equivalently to deterministic constraints. By using this reduction, we can handle a reliability-based design optimization problem under the distributionally-robust reliability constraint within the framework of deterministic optimization; in particular, nonlinear semidefinite programming. Two numerical examples are solved to demonstrate the relation between the optimal value and either the target reliability or the uncertainty magnitude.


Author(s):  
P. BHATTACHARJEE ◽  
K. RAMESH KUMAR ◽  
T. A. JANARDHAN REDDY

Optimization of any aerospace product results in increasing payload capacity of space vehicles. Essentially weight, volume and cost are the main constraints. Design optimization studies for aerospace system are increasingly gaining importance. The problem of optimum design under uncertainty has been formulated as reliability-based design optimization. The reliability based optimization, which includes robustness requirements leads to multi-objective optimization under uncertainty. In this paper Reliability, based design optimization study is carried out under linear constraint optimization to minimize the weight of a nitrogen gas bottle with specified target reliability. Response surface method considering full factorial experiment is used to establish multiple regression equation for induced hoop stress and maximum strain. Necessary data pertaining to design, manufacturing and operating conditions are collected systematically for variability study. Structural reliability is evaluated using Advanced First-Order Second-Moment Method (AFOSM). Finally, optimization formulation established and it has been discussed in this paper.


Author(s):  
Rami Mansour ◽  
Mårten Olsson

In reliability-based design optimization (RBDO), an optimal design which minimizes an objective function while satisfying a number of probabilistic constraints is found. As opposed to deterministic optimization, statistical uncertainties in design variables and design parameters have to be taken into account in the design process in order to achieve a reliable design. In the most widely used RBDO approaches, the First-Order Reliability Method (FORM) is used in the probability assessment. This involves locating the Most Probable Point (MPP) of failure, or the inverse MPP, either exactly or approximately. If exact methods are used, an optimization problem has to be solved, typically resulting in computationally expensive double loop or decoupled loop RBDO methods. On the other hand, locating the MPP approximately typically results in highly efficient single loop RBDO methods since the optimization problem is not necessary in the probability assessment. However, since all these methods are based on FORM, which in turn is based on a linearization of the deterministic constraints at the MPP, they may suffer inaccuracies associated with neglecting the nonlinearity of deterministic constraints. In a previous paper presented by the authors, the Response Surface Single Loop (RSSL) Reliability-based design optimization method was proposed. The RSSL-method takes into account the non-linearity of the deterministic constraints in the computation of the probability of failure and was therefore shown to have higher accuracy than existing RBDO methods. The RSSL-method was also shown to have high efficiency since it bypasses the concept of an MPP. In RSSL, the deterministic solution is first found by neglecting uncertainties in design variables and parameters. Thereafter quadratic response surface models are fitted to the deterministic constraints around the deterministic solution using a single set of design of experiments. The RBDO problem is thereafter solved in a single loop using a closed-form second order reliability method (SORM) which takes into account all elements of the Hessian of the quadratic constraints. In this paper, the RSSL method is used to solve the more challenging system RBDO problems where all constraints are replaced by one constraint on the system probability of failure. The probabilities of failure for the constraints are assumed independent of each other. In general, system reliability problems may be more challenging to solve since replacing all constraints by one constraint may strongly increase the non-linearity in the optimization problem. The extensively studied reliability-based design for vehicle crash-worthiness, where the provided deterministic constraints are general quadratic models describing the system in the whole region of interest, is used to demonstrate the capabilities of the RSSL method for problems with system reliability constraints.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Barron J. Bichon ◽  
Michael S. Eldred ◽  
Sankaran Mahadevan ◽  
John M. McFarland

Determining the optimal (lightest, least expensive, etc.) design for an engineered component or system that meets or exceeds a specified level of reliability is a problem of obvious interest across a wide spectrum of engineering fields. Various formulations and methods for solving this reliability-based design optimization problem have been proposed, but they typically involve accepting a tradeoff between accuracy and efficiency in the reliability analysis. This paper investigates the use of the efficient global optimization and efficient global reliability analysis methods to construct surrogate models at both the design optimization and reliability analysis levels to create methods that are more efficient than existing methods without sacrificing accuracy. Several formulations are proposed and compared through a series of test problems.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Taiki Matsumura ◽  
Raphael T. Haftka

Design under uncertainty needs to account for aleatory uncertainty, such as variability in material properties, and epistemic uncertainty including errors due to imperfect analysis tools. While there is a consensus that aleatory uncertainty be described by probability distributions, for epistemic uncertainty there is a tendency to be more conservative by taking worst case scenarios or 95th percentiles. This conservativeness may result in substantial performance penalties. Epistemic uncertainty, however, is usually reduced by additional knowledge typically provided by tests. Then, redesign may take place if tests show that the design is not acceptable. This paper proposes a reliability based design optimization (RBDO) method that takes into account the effects of future tests possibly followed by redesign. We consider each realization of epistemic uncertainty to correspond to a different design outcome. Then, the future scenario, i.e., test and redesign, of each possible design outcome is simulated. For an integrated thermal protection system (ITPS) design, we show that the proposed method reduces the mass penalty associated with a 95th percentile of the epistemic uncertainty from 2.7% to 1.2% compared to standard RBDO, which does not account for the future. We also show that the proposed approach allows trading off mass against development costs as measured by probability of needing redesign. Finally, we demonstrate that the tradeoff can be achieved even with the traditional safety factor based design.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Jianhua Zhou ◽  
Min Xu ◽  
Mian Li

Uncertainties, inevitable in nature, can be classified as probability based and interval based uncertainties in terms of its representations. Corresponding optimization strategies have been proposed to deal with these two types of uncertainties. It is more likely that both types of uncertainty can occur in one single problem, and thus, it is trivial to treat all uncertainties the same. A novel formulation for reliability-based design optimization (RBDO) under mixed probability and interval uncertainties is proposed in this paper, in which the objective variation is concerned. Furthermore, it is proposed to efficiently solve the worst-case parameter resulted from the interval uncertainty by utilizing the Utopian solution presented in a single-looped robust optimization (RO) approach where the inner optimization can be solved by matrix operations. The remaining problem can be solved utilizing any existing RBDO method. This work applies the performance measure approach to search for the most probable failure point (MPFP) and sequential quadratic programing (SQP) to solve the entire problem. One engineering example is given to demonstrate the applicability of the proposed approach and to illustrate the necessity to consider the objective robustness under certain circumstances.


Author(s):  
Jinghong Liang ◽  
Zissimos P. Mourelatos ◽  
Jian Tu

Reliability-Based Design Optimization (RBDO) can provide optimum designs in the presence of uncertainty. It can therefore, be a powerful tool for design under uncertainty. The traditional, double-loop RBDO algorithm requires nested optimization loops, where the design optimization (outer) loop, repeatedly calls a series of reliability (inner) loops. Due to the nested optimization loops, the computational effort can be prohibitive for practical problems. A single-loop RBDO algorithm is proposed in this paper for both normal and non-normal random variables. Its accuracy is the same with the double-loop approach and its efficiency is almost equivalent to deterministic optimization. It collapses the nested optimization loops into an equivalent single-loop optimization process by imposing the Karush-Kuhn-Tucker optimality conditions of the reliability loops as equivalent deterministic equality constraints of the design optimization loop. It therefore, converts the probabilistic optimization problem into an equivalent deterministic optimization problem, eliminating the need for calculating the Most Probable Point (MPP) in repeated reliability assessments. Several numerical applications including an automotive vehicle side impact example, demonstrate the accuracy and superior efficiency of the proposed single-loop RBDO algorithm.


Author(s):  
K. Pugazhendhi ◽  
A. K. Dhingra

Typically, a reliability based design optimization (RBDO) problem is solved as a nested optimization problem because an evaluation of the probabilistic constraint(s) involves solving a minimization problem. Over the years, a number of algorithms have been developed to solve the RBDO problem efficiently. All of these approaches involve an evaluation of derivatives of the responses. In this paper, a decoupled approach using automatic differentiation (AD) is presented to solve the RBDO problem. The proposed approach employs AD to evaluate the reliability, as well as to evaluate the sensitivity of the most probable point (MPP) with respect to the design variables. Since these evaluations involve a computation of the Jacobian and the Hessian, a use of AD improves the accuracy while simultaneously reducing the required number of response evaluations. The applicability of the proposed approach is shown through examples of increasing complexity ranging from problems where closed form solutions are available for evaluation of response to situations where finite element analysis is needed to compute the system response.


Sign in / Sign up

Export Citation Format

Share Document