Reliability Based Design Optimization Modeling Future Redesign With Different Epistemic Uncertainty Treatments

2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Taiki Matsumura ◽  
Raphael T. Haftka

Design under uncertainty needs to account for aleatory uncertainty, such as variability in material properties, and epistemic uncertainty including errors due to imperfect analysis tools. While there is a consensus that aleatory uncertainty be described by probability distributions, for epistemic uncertainty there is a tendency to be more conservative by taking worst case scenarios or 95th percentiles. This conservativeness may result in substantial performance penalties. Epistemic uncertainty, however, is usually reduced by additional knowledge typically provided by tests. Then, redesign may take place if tests show that the design is not acceptable. This paper proposes a reliability based design optimization (RBDO) method that takes into account the effects of future tests possibly followed by redesign. We consider each realization of epistemic uncertainty to correspond to a different design outcome. Then, the future scenario, i.e., test and redesign, of each possible design outcome is simulated. For an integrated thermal protection system (ITPS) design, we show that the proposed method reduces the mass penalty associated with a 95th percentile of the epistemic uncertainty from 2.7% to 1.2% compared to standard RBDO, which does not account for the future. We also show that the proposed approach allows trading off mass against development costs as measured by probability of needing redesign. Finally, we demonstrate that the tradeoff can be achieved even with the traditional safety factor based design.

Author(s):  
Taiki Matsumura ◽  
Raphael T. Haftka ◽  
Bhavani V. Sankar

The design of engineering systems is often based on analysis models with substantial errors in predicting failures, that is epistemic uncertainty. The epistemic uncertainty is reduced by post design tests, and the safety of unsafe designs restored by redesign. When this process of design, test and redesign is to be based on probabilistic analysis, there is some controversy on whether uncertainty associated with variability (aleatory uncertainty) should be treated differently than the epistemic uncertainty. In this paper we compare several approaches to design and redesign and treatments of the epistemic uncertainties. These include safety factors, probabilistic approach disregarding redesign and regarding redesign, treating epistemic uncertainty and aleatory uncertainty the same, and more conservative treatment of the epistemic uncertainty. We demonstrate that the proposed approach can allow tradeoff of system performance against development cost (probability of redesign), while a standard reliability based design optimization, which does not take into account future redesign, provides only a single point on the tradeoff curve. We also show that the tradeoff can be achieved even with the traditional safety factor approach, without any probabilistic optimization. Furthermore, we investigate different treatments of epistemic error for probability of failure calculation. We find that it is possible to design to the 95th percentile of the probability of failure with modest mass penalty compared to treating epistemic and aleatory uncertainty alike.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Pinar Acar

Microstructures are stochastic by their nature. These aleatoric uncertainties can alter the expected material performance substantially and thus they must be considered when designing materials. One safe approach would be assuming the worst case scenario of uncertainties in design. However, design under the worst case conditions can lead to over-conservative solutions that provide less effective material properties. Here, a more powerful design approach can be developed by implementing reliability constraints into the optimization problem to achieve superior material properties while satisfying the prescribed design criteria. This is known as reliability-based design optimization (RBDO), and it has not been studied for microstructure design before. In this work, an analytical formulation that models the propagation of microstructural uncertainties to the material properties is utilized to compute the probability of failure. Next, the analytical uncertainty solution is integrated into the optimization problem to define the reliability constraints. The presented optimization under uncertainty scheme is exercised to maximize the yield stress of α-Titanium and magnetostriction of Galfenol, respectively.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Khaldon T. Meselhy ◽  
G. Gary Wang

Reliability-based design optimization (RBDO) algorithms typically assume a designer's prior knowledge of the objective function along with its explicit mathematical formula and the probability distributions of random design variables. These assumptions may not be valid in many industrial cases where there is limited information on variable variability and the objective function is subjective without mathematical formula. A new methodology is developed in this research to model and solve problems with qualitative objective functions and limited information about random variables. Causal graphs and design structure matrix are used to capture designer's qualitative knowledge of the effects of design variables on the objective. Maximum entropy theory and Monte Carlo simulation are used to model random variables' variability and derive reliability constraint functions. A new optimization problem based on a meta-objective function and transformed deterministic constraints is formulated, which leads close to the optimum of the original mathematical RBDO problem. The developed algorithm is tested and validated with the Golinski speed reducer design case. The results show that the algorithm finds a near-optimal reliable design with less initial information and less computation effort as compared to other RBDO algorithms that assume full knowledge of the problem.


2020 ◽  
Vol 10 (17) ◽  
pp. 5748
Author(s):  
Suwin Sleesongsom ◽  
Sujin Bureerat

Reliability-based design optimization (RBDO) of a mechanism is normally based on the non-probabilistic model, which is viewed as failure possibility constraints in each optimization loop. It leads to a double-loop nested problem that causes a computationally expensive evaluation. Several methods have been developed to solve the problem, which are expected to increase the realization of optimum results and computational efficiency. The purpose of this paper was to develop a new technique of RBDO that can reduce the complexity of the double-loop nested problem to a single-loop. This involves using a multi-objective evolutionary technique combined with the worst-case scenario and fuzzy sets, known as a multi-objective, reliability-based design optimization (MORBDO). The optimization test problem and a steering linkage design were used to validate the performance of the proposed technique. The proposed technique can reduce the complexity of the design problem, producing results that are more conservative and realizable.


Author(s):  
Kyung K. Choi ◽  
Byeng D. Youn

Deterministic optimum designs that are obtained without consideration of uncertainty could lead to unreliable designs, which call for a reliability approach to design optimization, using a Reliability-Based Design Optimization (RBDO) method. A typical RBDO process iteratively carries out a design optimization in an original random space (X-space) and reliability analysis in an independent and standard normal random space (U-space). This process requires numerous nonlinear mapping between X- and U-spaces for a various probability distributions. Therefore, the nonlinearity of RBDO problem will depend on the type of distribution of random parameters, since a transformation between X- and U-spaces introduces additional nonlinearity to reliability-based performance measures evaluated during the RBDO process. Evaluation of probabilistic constraints in RBDO can be carried out in two different ways: the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). Different reliability analysis approaches employed in RIA and PMA result in different behaviors of nonlinearity of RIA and PMA in the RBDO process. In this paper, it is shown that RIA becomes much more difficult to solve for non-normally distributed random parameters because of highly nonlinear transformations involved. However, PMA is rather independent of probability distributions because of little involvement of the nonlinear transformation.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Jianhua Zhou ◽  
Min Xu ◽  
Mian Li

Uncertainties, inevitable in nature, can be classified as probability based and interval based uncertainties in terms of its representations. Corresponding optimization strategies have been proposed to deal with these two types of uncertainties. It is more likely that both types of uncertainty can occur in one single problem, and thus, it is trivial to treat all uncertainties the same. A novel formulation for reliability-based design optimization (RBDO) under mixed probability and interval uncertainties is proposed in this paper, in which the objective variation is concerned. Furthermore, it is proposed to efficiently solve the worst-case parameter resulted from the interval uncertainty by utilizing the Utopian solution presented in a single-looped robust optimization (RO) approach where the inner optimization can be solved by matrix operations. The remaining problem can be solved utilizing any existing RBDO method. This work applies the performance measure approach to search for the most probable failure point (MPFP) and sequential quadratic programing (SQP) to solve the entire problem. One engineering example is given to demonstrate the applicability of the proposed approach and to illustrate the necessity to consider the objective robustness under certain circumstances.


Author(s):  
Hao Pan ◽  
Zhimin Xi ◽  
Ren-Jye Yang

Reliability-based design optimization (RBDO) has been widely used to design engineering products with minimum cost function while meeting defined reliability constraints. Although uncertainties, such as aleatory uncertainty and epistemic uncertainty, have been well considered in RBDO, they are mainly considered for model input parameters. Model uncertainty, i.e., the uncertainty of model bias which indicates the inherent model inadequacy for representing the real physical system, is typically overlooked in RBDO. This paper addresses model uncertainty characterization in a defined product design space and further integrates the model uncertainty into RBDO. In particular, a copula-based bias correction approach is proposed and results are demonstrated by two vehicle design case studies.


2003 ◽  
Vol 126 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Byeng D. Youn ◽  
Kyung K. Choi

Because deterministic optimum designs obtained without taking uncertainty into account could lead to unreliable designs, a reliability-based approach to design optimization is preferable using a Reliability-Based Design Optimization (RBDO) method. A typical RBDO process iteratively carries out a design optimization in an original random space (X-space) and a reliability analysis in an independent and standard normal random space (U-space). This process requires numerous nonlinear mappings between X- and U-spaces for various probability distributions. Therefore, the nonlinearity of the RBDO problem will depend on the type of distribution of random parameters, since a transformation between X- and U-spaces introduces additional nonlinearity into the reliability-based performance measures evaluated during the RBDO process. The evaluation of probabilistic constraints in RBDO can be carried out in two ways: using either the Reliability Index Approach (RIA), or the Performance Measure Approach (PMA). Different reliability analysis approaches employed in RIA and PMA result in different behaviors of nonlinearity for RIA and PMA in the RBDO process. In this paper, it is shown that RIA becomes much more difficult to solve for non-normally distributed random parameters because of the highly nonlinear transformations that are involved. However, PMA is rather independent of probability distributions because it only has a small involvement with a nonlinear transformation.


Sign in / Sign up

Export Citation Format

Share Document