Multi-Lead Direct Current Potential Drop Method for In Situ Health Monitoring of Ceramic Matrix Composites

Author(s):  
Yogesh P. Singh ◽  
Michael J. Presby ◽  
Manigandan Kannan ◽  
Gregory N. Morscher

The method of direct current potential drop (DCPD) can be utilized as an effective and convenient approach for in situ damage detection, and as a nondestructive evaluation technique. We present the results from use of a multiprobe DCPD technique for in situ damage detection in loading of a SiC/SiC composite. It is shown that in three different modes of loading (monotonic, fatigue, and cyclic load–unload), the sensing capabilities of DCPD technique compare well to the techniques of modal acoustic emission (AE) and digital image correlation (DIC). It was also found that DCPD technique provides a far earlier warning of failure under fatigue loading than the other two methods. In addition, we show that strategically placed multiple voltage leads on the specimen surface provide a promising way of qualitatively determining the crack initiation site. Therefore, the use of multiple lead DCPD method, together with other techniques, provides a viable option for sensing damage in ceramic matrix composites (CMCs) with complex geometries, and for applications at higher temperatures.

Author(s):  
Yogesh P. Singh ◽  
Michael J. Presby ◽  
Kannan Manigandan ◽  
Gregory N. Morscher

The method of direct current potential drop (DCPD) can be utilized as an effective, and convenient approach for in-situ damage detection, and as a non-destructive evaluation technique. We present the results from use of a multiprobe DCPD technique for in-situ damage detection in loading of a SiC/SiC composite. It is shown that in three different modes of loading (monotonic, fatigue, and cyclic load-unload), the sensing capabilities of DCPD technique compares well to the techniques of modal acoustic emission (AE) and digital image correlation (DIC). It was also found that DCPD technique provides a far earlier warning of failure under fatigue loading than the other two methods. In addition, we show that strategically placed multiple voltage leads on the specimen surface provides a promising way of qualitatively determining the crack initiation site. Therefore, the use of multiple lead DCPD method, together with other techniques, provides a viable option for sensing damage in ceramic matrix composites (CMCs) with complex geometries, and for applications at higher temperatures.


2014 ◽  
Vol 23 (8) ◽  
pp. 1133-1149 ◽  
Author(s):  
Saijun Zhang ◽  
Qinxiang Xia ◽  
Wenfang Li ◽  
Xuhui Zhou

In this study, a damage measurement procedure is proposed, which combines both digital image correlation and direct current potential drop techniques to evaluate quantitatively the ductile damage in metal sheets during uniaxial tensile loading. Digital image correlation and direct current potential drop techniques are applied to measure the full-field deformation and overall electrical resistance of the region of interest of the specimen during tensile loading. The basic principles, methodology and derivation process are presented in detail. A professional data processing system based on MATLAB is developed to characterize the deformation–resistance–damage relationship during uniaxial tensile loading. The ductile damage can be evaluated conveniently by the proposed approach, and the experimental results so obtained are consistent with those derived by using micro-hardness technique. The necking stage during uniaxial tension is discussed in detail, and it has been shown that the onsets of diffused necking and localized necking can be determined according to the relationship between the major principle true strain and loading steps. Further, the onset of the localized necking can be used to estimate accurately whether the material is going to rupture.


Sign in / Sign up

Export Citation Format

Share Document