Full- and Reduced-Order Fault Detection Filter Design With Application in Flow Transmission Lines

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Saeed Salavati ◽  
Karolos Grigoriadis ◽  
Matthew Franchek ◽  
Reza Tafreshi

The full- and reduced-order fault detection filter design is examined for fault diagnosis in linear time-invariant (LTI) systems in the presence of noise and disturbances. The fault detection filter design problem is formulated as an H∞ problem using a linear fractional transformation (LFT) framework and the solution is based on the bounded real lemma (BRL). Necessary and sufficient conditions for the existence of the fault detection filter are presented in the form of linear matrix inequalities (LMIs) resulting in a convex problem for the full-order filter design and a rank-constrained nonconvex problem for the reduced-order filter design. By minimizing the sensitivity of the filter residuals to noise and disturbances, the fault detection objective is fulfilled. A reference model can be incorporated in the design in order to shape the desired performance of the fault detection filter. The proposed fault detection and isolation (FDI) framework is applied to detect instrumentation and sensor faults in fluid transmission and pipeline systems. To this end, a lumped parameter framework for modeling infinite-dimensional fluid transient systems is utilized and a low-order model is obtained to pursue the instrumentation fault diagnosis objective. Full- and reduced-order filters are designed for sensor FDI. Simulations are conducted to assess the effectiveness of the proposed fault detection approach.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Lihong Rong ◽  
Xiuyan Peng ◽  
Liangliang Liu ◽  
Biao Zhang

The fault detection (FD) reduced-order filtering problem is investigated for a family of polytopic uncertain discrete-time Markovian jump linear systems (MJLSs) with time-varying delays. Under meeting the control precision requirements of the complex systems, the reduced-order fault detection filter can improve the efficiency of the fault detection. Then, by the aid of the Markovian Lyapunov function and convex polyhedron techniques, some novel time-varying delays and polytopic uncertain sufficient conditions in terms of linear matrix inequality (LMI) are proposed to insure the existence of the FD reduced-order filter. Finally, an illustrative example is provided to verify the usefulness of the given method.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Dušan Krokavec ◽  
Anna Filasová ◽  
Pavol Liščinský

The paper is concerned with the fault detection filter design requirements that relax the existing conditions reported in the previous literature by adapting the unitary system principle in approximation of fault detection filter transfer function matrix for continuous-time linear MIMO systems. Conditions for the existence of a unitary construction are presented under which the fault detection filter with a unitary transfer function can be designed to provide high residual signals sensitivity with respect to faults. Otherwise, reflecting the emplacement of singular values in unitary construction principle, an associated structure of linear matrix inequalities with built-in constraints is outlined to design the fault detection filter only with a Hurwitz transfer function. All proposed design conditions are verified by the numerical illustrative examples.


2012 ◽  
Vol 503-504 ◽  
pp. 1389-1392
Author(s):  
Li Min Chen

A robust fault detection approach for network-based system is discussed in this paper. The fault detection problem is converted into fault detection filter design. The network-induced delay is assumed to have both the upper bound and the lower bound, which is more general compared with only considering the upper bound. The Lyapunov-Krasovskii functional and the linear matrix inequality (LMI)-based procedure are adopted to design the filter. And the filter can guarantee that the estimation error satisfies the H∞ constraint. Fault detection filter is designed for a flight control system and the effectiveness is verified by the simulation results.


Author(s):  
Siyang Zhao ◽  
Jinyong Yu

This article investigates the dynamic event-triggered fault detection filter (FDF) design problem for linear continuous-time networked systems, considering the fading channels phenomenon and randomly occurring faults. A dynamic event-triggered mechanism (ETM) is introduced to reduce the network bandwidth occupation more efficiently by utilizing an internal variable which can enlarge the event-triggered intervals. Besides, the Zeno phenomenon is eliminated fundamentally by ensuring that the event-triggered intervals are positive lower bounded. After that, sufficient conditions are derived to guarantee the stochastic stability of the residual system with a desired [Formula: see text] performance and the co-design criterion of the FDF and the dynamic ETM is developed. Finally, an unmanned surface vehicle (USV) system is used to illustrate the applicability of the presented approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Liyuan Hou ◽  
Shouming Zhong ◽  
Hong Zhu ◽  
Yong Zeng ◽  
Lin Shi

This paper purposes the design of a fault detection filter for stochastic systems with mixed time-delays and parameter uncertainties. The main idea is to construct some new Lyapunov functional for the fault detection dynamics. A new robustly asymptotically stable criterion for the systems is derived through linear matrix inequality (LMI) by introducing a comprehensive different Lyapunov-Krasovskii functional. Then, the fault detection filter is designed in terms of linear matrix inequalities (LMIs) which can be easily checked in practice. At the same time, the error between the residual signal and the fault signal is made as small as possible. Finally, an example is given to illustrate the effectiveness and advantages of the proposed results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
An-quan Sun ◽  
Lin Zhang ◽  
Wen-feng Wang ◽  
Jun Wang ◽  
Tian-lin Niu ◽  
...  

This paper considers the robust fault detection and isolation (FDI) problem for a class of nonlinear networked systems (NSs) with randomly occurring quantisations (ROQs). After vector augmentation, Lyapunov function is introduced to ensure the asymptotically mean-square stability of fault detection system. By transforming the quantisation effects into sector-bounded parameter uncertainties, sufficient conditions ensuring the existence of fault detection filter are proposed, which can reduce the difference between output residuals and fault signals as small as possible underH∞framework. Finally, an example linearized from a vehicle system is introduced to show the efficiency of the proposed fault detection filter.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Yunling Shi ◽  
Xiuyan Peng

This paper investigates the problem of full-order and reduced-order fault detection filter (FDF) design under unified linear matrix inequality (LMI) conditions for a class of continuous-time singular Markovian jump systems (CTSMJSs) with time-varying delays and polytopic uncertain transition rates. By constructing a new Lyapunov function, sufficient conditions are firstly provided for the singular model error augmented system such that the system is stochastically admissible with an H∞ performance level γ. And then, by applying a novel convex polyhedron technique to decoupled linear matrix inequalities, the full-order and reduced-order fault detection filter parameters can be obtained within a convex optimization frame. The reduced-order fault detection filter (FDF) can not only meet the fault detection accuracy requirements of complex systems but also improve the fault detection efficiency. Finally, a DC motor and an illustrative simulation example are given to verify the feasibility and effectiveness of the proposed algorithms.


Sign in / Sign up

Export Citation Format

Share Document