Toward Standards-Based Generation of Reusable Life Cycle Inventory Data Models for Manufacturing Processes

Author(s):  
Michael P. Brundage ◽  
David Lechevalier ◽  
K. C. Morris

The production stage of a product's life cycle can significantly contribute to its overall environmental impact. Estimates of environmental impact for a product are typically produced using life cycle assessment (LCA) methods. These methods rely on life cycle inventory (LCI) data containing impact estimates of manufacturing processes and other operations that contribute to a product's creation. The accuracy of LCI data is critical for quality assessments; however, these data are often insufficient in the types and varieties of manufacturing processes covered and are often only a coarse estimate of actual impacts. At the same time, much manufacturing research focuses on how to model, measure, assess, and reduce the environmental impacts of manufacturing processes. Recent standards emerging from ASTM International define a structured format for presenting these studies in a reusable way. In this paper, we investigate the potential for using the ASTM E3012-16 format to generate LCI datasets suitable to perform LCA by mapping from the ASTM standard into the widely adopted ecoSpold2 format. A process is presented for generating LCI datasets from ASTM models, and overlaps and gaps between the two standards are identified.

2021 ◽  
Author(s):  
BURÇİN ATILGAN TÜRKMEN

Abstract A massive increase in the use and production of masks worldwide has been seen in the current COVID-19 pandemic, which has contributed to reducing the transmission of the virus globally. This paper aims to evaluate the environmental impacts of disposable medical masks using the Life Cycle Assessment (LCA) method, first for the selected functional unit related to the manufacturing of one disposable medical mask and then for the global manufacturing of this type of mask in 2020. The inventory data was constructed directly from the industry. The system boundaries include the fabric, nose wire, and ear loops parts, transportation of materials, body making, ultrasonic vending, and packaging steps. The results suggest that the global warming potential of a disposable medical mask is 0.02 g CO2-Eq. for which the main contributor is the packaging step (44%) followed by the life cycle of fabric (27%), and nose wire (14%) parts. In total, 52 billion disposable medical masks used worldwide consumes 25 TJ of energy in 2020. The global warming potential of disposable medical masks supplied in a year of the COVID-19 pandemic is 1.1 Mt CO2 eq., equivalent to around 1.3 billion return flights from Istanbul to New York. This paper assessed the hotspots in the medical mask, allowing for a significant reduction in the environmental impact of mask use. This can be used as a roadmap for future mask designs.


2015 ◽  
Vol 76 ◽  
pp. 418-426 ◽  
Author(s):  
Carlo Ingrao ◽  
Agata Lo Giudice ◽  
Jacopo Bacenetti ◽  
Amin Mousavi Khaneghah ◽  
Anderson S. Sant’Ana ◽  
...  

10.29007/8pnj ◽  
2018 ◽  
Author(s):  
Guido van Capelleveen ◽  
Johanna Pohl ◽  
Andreas Fritsch ◽  
Daniel Schien

Life cycle assessment is a well-established methodology for assessing the environmental impacts of products and services. Unfortunately, an essential part of this life cycle assessment method, col- lecting inventory data, is extremely time consuming. The quality of manually conducted LCA studies is often limited by uncertainty in the inventory data or narrow scope. Past attempts to overcome these challenges through automation of data collection utilizing the Internet of Things have relied on fully centralized architectures. The drawback of a central repository is the complex coordination between all involved actors in supply chains of products and services. This paper proposes an alternative hybrid approach combining a primary distributed system supplemented with a central repository reducing the need for coordination. This hybrid approach is named "the Footprint of Things". We present a system design that embeds the automatic reporting of life cycle inventory data, such as energy and material flows, into all product components involved in a service delivery. The major strength of our novel system design, among others, is its capacity for real-time and more precise impact calculation of ICT services.


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2016 ◽  
Vol 106 (03) ◽  
pp. 136-140
Author(s):  
R. Miehe ◽  
M. Wiedenmann ◽  
T. Prof. Bauernhansl

Die Ökobilanz hat sich als Instrument zur Bewertung der Umweltauswirkungen von Produkten und Prozessen durchgesetzt. Dennoch stellt ihre Durchführung Nutzer immer wieder vor Herausforderungen. Der Fachartikel präsentiert einen Ansatz für eine vergleichende Betrachtung der ökologischen Auswirkungen des unternehmerischen Handelns auf Basis der jeweiligen Unternehmens- und Branchenumsätze. Der Umsatz-Nachhaltigkeitsindex soll als Konzept für ein Benchmark für Unternehmen einer Branche dienen.   Life Cycle Assessment has prevailed as an instrument to evaluate the environmental impact of products and processes. Its execution, however, poses a challenge to operators. In this paper, we present an approach for a comparative examination of environmental impacts of industrial behavior based on the turnover of companies and their equivalent sectors. The Turnover-Sustainability-Index serves as a benchmark for companies within a sector.


Sign in / Sign up

Export Citation Format

Share Document