Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate

2018 ◽  
Vol 141 (4) ◽  
Author(s):  
M. A. M. Hassan ◽  
H. M. Abdel-Hameed ◽  
Osama E. Mahmoud

Climatic change illustrates the need to new policy of load management. In this research, a special design of thermal energy storage (TES) system, with an appropriate storage medium that is suitable for residential and commercial buildings has been constructed and commissioned. Direct contact heat transfer is a significant factor to enhance the performance of TES. Numerous experimental runs were conducted to investigate the clathrate formation and the characteristics of the proposed TES cooling system; in addition, the effect of using nanofluid particles Al2O3 on the formation of clathrate under different operating parameters was evaluated. The experiments were conducted with a fixed amount of water 15 kg, mass of refrigerant to form clathrate of 6.5 kg, nanofluid particles concentration ranged from 0.5% to 2% and the mass flux of refrigerant varied from 150 to 300 kg/m2 s. The results indicate that there is a significant effect of using nanoparticles concentration on the charging time of the clathrate formation. The percentage of reduction in charging time of about 22% was achieved for high nanoparticles concentration. In addition, an enhancement in charging time by increasing the refrigerant flow rate reaches 38% when the mass flux varied from 200 to 400 kg/m2 s. New correlation describing the behavior of the temperatures with the charging time at different nanoparticles concentrations is presented.


2015 ◽  
Vol 787 ◽  
pp. 27-31
Author(s):  
M. Gajendiran ◽  
P.M. Sivaram ◽  
N. Nallusamy

In the present work the thermal performance of Phase Change Material (PCM) based solar thermal energy storage system under the influence of different heat transfer fluids (HTF) have been investigated. Water, Ethylene Glycol–water and Copper nanofluid are selected as HTF. Paraffin is used as PCM and encapsulated in cylindrical capsules. The thermal energy storage (TES) tank acts as a storage unit consisting PCM capsules packed in three beds surrounded by water, which acts as sensible heat storage (SHS) material. HTF circulated by a pump transfers heat from solar flat plate collector (FPC) to the TES tank. 25% ethylene glycol -75% water HTF is prepared by mixing ethylene glycol (EG) with water. Copper-distilled water nanofluids (0.3% by weight) are prepared using prolonged sonication with sodium dodecyl benzene sulphonate (SDBS) as the surfactant. Various performance parameters such as charging time, instantaneous heat stored, cumulative heat stored and system efficiency are studied for various HTFs. It is found that the charging time is reduced by 33.3% for copper nanofluid and 22.2% for ethylene glycol- water mixture HTFs. It is also observed that there is an increase in system efficiency and cumulative heat stored with reference to charging time for these HTFs when compared with conventional HTF 1 i.e. water.



Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6241
Author(s):  
Manon Bulté ◽  
Thierry Duren ◽  
Olivier Bouhon ◽  
Estelle Petitclerc ◽  
Mathieu Agniel ◽  
...  

A numerical model was built using FEFLOW® to simulate groundwater flow and heat transport in a confined aquifer in Brussels where two Aquifer Thermal Energy Storage (ATES) systems were installed. These systems are operating in adjacent buildings and exploit the same aquifer made up of mixed sandy and silty sublayers. The model was calibrated for groundwater flow and partially for heat transport. Several scenarios were considered to determine if the two ATES systems were interfering. The results showed that a significant imbalance between the injection of warm and cold water in the first installed ATES system led to the occurrence of a heat plume spreading more and more over the years. This plume eventually reached the cold wells of the same installation. The temperature, therefore, increased in warm and cold wells and the efficiency of the building’s cooling system decreased. When the second ATES system began to be operational, the simulated results showed that, even if the heat plumes of the two systems had come into contact, the influence of the second system on the first one was negligible during the first two years of joint operation. For a longer modeled period, simulated results pointed out that the joint operation of the two ATES systems was not adapted to balance, in the long term, the quantity of warm and cold water injected in the aquifer. The groundwater temperature would rise inexorably in the warm and cold wells of both systems. The heat plumes would spread more and more over the years at the expense of the efficiency of both systems, especially concerning building’s cooling with stored cold groundwater.



2020 ◽  
Vol 273 ◽  
pp. 123030
Author(s):  
Renkun Dai ◽  
Javad Mostaghimi ◽  
Nianqi Li ◽  
Tianrui Deng ◽  
Qiuwang Wang ◽  
...  




Author(s):  
Saeed Tiari ◽  
Addison Hockins ◽  
Samantha Moretti

Abstract In the current study, the thermal characteristics of a latent heat thermal energy storage system enhanced with annular and radial fins are investigated experimentally. Rubitherm RT-55 is used as the phase change material (PCM) and is enclosed within a vertical cylindrical container. Water is used as the heat transfer fluid (HTF) which is circulated in a copper pipe that passes through the center of the container. The hot HTF is circulated through the system until the entire mass of solid PCM inside the container is melted. Twelve k-type thermocouples are inserted into the container at different levels to monitor the PCM temperature during the charging processes. A thermal imaging camera is used to take thermal images of the latent heat thermal energy system as it operates. The effects of different number of annular and radial fins attached to the central pipe on the thermal performance of the latent heat thermal energy storage system during the charging processes have been studied. It was found that the inclusion of 10 and 20 annular fins decreased the charging time by 79.5% and 82.8%, respectively. The two radial fin designs of 4 fins and 8 fins were assessed and found to decrease charging time by 81.9% and 86.6%, respectively.



2021 ◽  
pp. 1-16
Author(s):  
Nesrine Boulaktout ◽  
El-Hacène Mezaache ◽  
Mohamed Teggar ◽  
Müslüm Arici ◽  
K.A.R. Ismail ◽  
...  

Abstract Immersion of fins in latent heat thermal energy storage systems has been used as an influential approach to remedy the poor thermal conductivity of phase-change materials. Present paper numerically investigates heat transfer and phase change improvement by means of longitudinal fins in a shell and tube thermal energy storage unit. The main aim of this study is to investigate the effect of fin orientation on the performance of the storage unit. Six configurations of different fin numbers (2, 4 and 8 fins) and orientations (π/2, π/4, and π/8) are tested. For simulations, a 2D mathematical model incorporating the enthalpy-porosity method and finite volume techniques are established and solved by ANSYS-Fluent. The numerical predictions are successfully validated by comparison with experimental and numerical data from the literature. Heat transfer characteristics and melting process are analyzed through streamlines, isotherms, mean temperature, heat flux and heat transfer coefficient as well as transient melting front position and liquid fractions. Results show that orientation of fins has significant impact on the charging time for two cases (2 and 4 fins) whereas no significant reduction in charging time was obtained for the case of 8 fins. In case of utilizing 2 fins, a fin orientation of 0° (vertical fins) shortens the charging time by up to 2.5 folds compared to the horizontal fins (90°). These results could help designing efficient latent thermal energy storage units.



Author(s):  
Chandra Sekhar Chinnapatnam ◽  
Jyotirmay Mathur ◽  
Mahabir Bhandari ◽  
Prateek Srivastava ◽  
Yasin Khan ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document