Topology Optimization of Three-Dimensional Woven Materials Using a Ground Structure Design Variable Representation

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Seung-Hyun Ha ◽  
Hak Yong Lee ◽  
Kevin J. Hemker ◽  
James K. Guest

Three-dimensional (3D) weaving has recently arisen as viable means for manufacturing metallic, architected microlattices. Herein, we describe a topology optimization approach for designing the architecture of such 3D woven lattices. A ground structure design variable representation is combined with linear manufacturing constraints and a projection mapping to realize lattices that satisfy the rather restrictive topological constraints associated with 3D weaving. The approach is demonstrated in the context of inverse homogenization to design lattices with maximized fluid permeability. Stokes flow equations with no-slip conditions governing unit cell flow fields are interpolated using the Darcy–Stokes finite element model, leveraging existing work in the topology optimization of fluids. The combined algorithm is demonstrated to design manufacturable lattices with maximized permeability whose properties have been experimentally measured in other published work.

Author(s):  
Jian Hui Luo ◽  
Hae Chang Gea

Abstract A systematic topology optimization approach is developed to design the optimal stiffener of three dimensional shell/plate structures in static and eigenvalue problems. Optimal stiffener design involves the determination of the best location and orientation. In this paper, the stiffener location problem is solved by a microstructure-based design domain method and the orientation probelm is modeled as an optimal orientation problem of equivalent orthotropic materials, which is solved by a newly developed energy based method. Examples are presented to demonstrate the application of the proposed approach.


2008 ◽  
Vol 55 (2) ◽  
pp. 531-540 ◽  
Author(s):  
LuÍs Augusto Motta Mello ◽  
CÍcero Ribeiro de Lima ◽  
Marcelo Britto Passos Amato ◽  
Raul Gonzalez Lima ◽  
EmÍlio Carlos Nelli Silva

2014 ◽  
Vol 894 ◽  
pp. 158-162 ◽  
Author(s):  
Bing Qin Wang ◽  
Bing Li Wang ◽  
Zhi Yuan Huang

The evolutionary structural optimization (ESO) is used to optimize constrained damping layer structure. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, the elements of constrained damping layers and modal loss factor are considered as design variable and objective function, while damping material consumption is considered as a constraint. The sensitivity of modal loss factor to design variable is further derived using modal strain energy analysis method. Numerical example is used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 221-244 ◽  
Author(s):  
Zheng Ling ◽  
Xie Ronglu ◽  
Wang Yi ◽  
Adel El-Sabbagh

Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA) is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an invaluable design tool.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Neal M. Patel ◽  
Byung-Soo Kang ◽  
John E. Renaud ◽  
Andrés Tovar

Crashworthiness design is an evolving discipline that combines vehicle crash simulation and design synthesis. The goal is to increase passenger safety subject to manufacturing cost constraints. The crashworthiness design process requires modeling of the complex interactions involved in a crash event. Current approaches utilize a parametrized optimization approach that requires response surface approximations of the design space. This is due to the expensive nature of numerical crash simulations and the high nonlinearity and noisiness in the design space. These methodologies usually require a significant effort to determine an initial design concept. In this paper, a heuristic approach to continuum-based topology optimization is developed for crashworthiness design. The methodology utilizes the cellular automata paradigm to generate three-dimensional design concepts. Furthermore, a constraint on maximum displacement is implemented to maintain a desired performance of the structures synthesized. Example design problems are used to demonstrate that the proposed methodology converges to a final topology in an efficient manner.


Author(s):  
Enrico Boccini ◽  
Enrico Meli ◽  
Andrea Rindi ◽  
Simone Corbò ◽  
Giuseppe Iurisci

Topology optimization is an innovative strategy applied in the turbomachinery field with the aim of substantially improving the performances of turbomachinery components in terms of weights, stress levels and rotation speed, with a very remarkable economic impact. Being very flexible, topology optimization allows to manage the structures topology, significantly improving material distribution within a given design space for a given set of loads and boundary conditions. In this paper, the authors, in cooperation with General Electric Nuovo Pignone, develop a new concept design of a turbine disk and the optimized component is compared to the benchmark, in order to verify the achieved improvements. Special attention is paid to the use of innovative materials with lattice structures, characterized by complex three-dimensional geometries. Thanks to advanced technologies, as additive manufacturing, it is now possible to effectively exploit topology optimization to develop new components featured by complex structures. The developed prototypes will be manufactured and tested in the near future together with the industrial partners.


Author(s):  
Jiten Patel ◽  
Seung-Kyum Choi

Uncertainties in material properties, geometry, manufacturing processes, and operational environments are clearly critical at all scales (nano-, micro-, meso-, and macro-scale). Specifically, reliabilty analysis in mesostructured materials can be driven by these uncertainties. The concept of mesostructured materials is motivated by the desire to put material only where it is needed for a specific application. This research develops a reliability-based synthesis method to design mesostructures under uncertainty, which have superior structural compliant performance per weight than parts with bulk material or foams. The efficiency of the proposed framework is achieved with the combination of topology optimization and stochastic approximation which utilizes stochastic local regression and Latin Hypercube Sampling. The effectiveness of the proposed framework was demonstrated using a ground structure topology optimization approach.


2013 ◽  
Vol 325-326 ◽  
pp. 167-171
Author(s):  
Zuo Shi Liu ◽  
Xiao Hong Zhang ◽  
Xiu Qin Gao

This paper introduces the topology optimization theory and mathematical model of the variable density method, to use HyerMesh Optistruct module, designs the structure of the transmission shift fork by topological optimization. First establishes the original three-dimensional model of the fork according to the design requirement, then in the HyerMesh establishes the finite element model of the fork, and sets the fork load constraints and the manufacturing process constraints, finally gets a reasonable distribution of materials, uniform force and can be used for manufacturing the ideal topology configuration, and then by the Ossmooth tool obtains directly optimized three-dimensional model. The topological optimization technique, can effectively guides the design personnel of product structure modification and new product structure design, makes product design structure high reliability, economical.


Sign in / Sign up

Export Citation Format

Share Document