Design of Mesostructured Materials Under Uncertainty

Author(s):  
Jiten Patel ◽  
Seung-Kyum Choi

Uncertainties in material properties, geometry, manufacturing processes, and operational environments are clearly critical at all scales (nano-, micro-, meso-, and macro-scale). Specifically, reliabilty analysis in mesostructured materials can be driven by these uncertainties. The concept of mesostructured materials is motivated by the desire to put material only where it is needed for a specific application. This research develops a reliability-based synthesis method to design mesostructures under uncertainty, which have superior structural compliant performance per weight than parts with bulk material or foams. The efficiency of the proposed framework is achieved with the combination of topology optimization and stochastic approximation which utilizes stochastic local regression and Latin Hypercube Sampling. The effectiveness of the proposed framework was demonstrated using a ground structure topology optimization approach.

Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Non-stochastic lattice structures are patterned after the unit cell topology and are of interest to the research and design communities for improving stiffness to weight ratios and/or metamaterial design. While additive manufacturing (AM) increases design freedom, it remains difficult to design or select an appropriate unit cell topology. In this work, a ground structure topology optimization approach is developed for unit cell design. Using a multi-objective evolutionary algorithm, this framework incorporates a library of different objectives, constraints, and penalties. The Additive Lattice Topology Optimization (ALTO) approach generates novel lattice structures for AM from the selected design objectives. A key purpose of this framework is incorporating AM process considerations into the optimization through objectives, constraints, and penalty functions for improved manufacturability. Two case studies presented in this work demonstrate ALTO’s ability to generate novel lattice structures with specific functionality while accounting for AM process constraints for laser powder bed fusion. Case Study 1 is an example of generating a lattice structure for heat sink applications. Case Study 2 demonstrates creation of three novel lattices with different stiffness properties, each with the same volume fraction. Using ground structure topology optimization and incorporating AM process considerations, ALTO is a unique approach for improved lattice structure design.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Seung-Hyun Ha ◽  
Hak Yong Lee ◽  
Kevin J. Hemker ◽  
James K. Guest

Three-dimensional (3D) weaving has recently arisen as viable means for manufacturing metallic, architected microlattices. Herein, we describe a topology optimization approach for designing the architecture of such 3D woven lattices. A ground structure design variable representation is combined with linear manufacturing constraints and a projection mapping to realize lattices that satisfy the rather restrictive topological constraints associated with 3D weaving. The approach is demonstrated in the context of inverse homogenization to design lattices with maximized fluid permeability. Stokes flow equations with no-slip conditions governing unit cell flow fields are interpolated using the Darcy–Stokes finite element model, leveraging existing work in the topology optimization of fluids. The combined algorithm is demonstrated to design manufacturable lattices with maximized permeability whose properties have been experimentally measured in other published work.


2021 ◽  
Author(s):  
Niclas Strömberg

Abstract The use of lattice structures in design for additive manufacturing has quickly emerged as a popular and efficient design alternative for creating innovative multifunctional lightweight solutions. In particular, the family of triply periodic minimal surfaces (TPMS) studied in detail by Schoen for generating frame-or shell-based lattice structures seems extra promising. In this paper a multi-scale topology optimization approach for optimal macro-layout and local grading of TPMS-based lattice structures is presented. The approach is formulated using two different density fields, one for identifying the macro-layout and another one for setting the local grading of the TPMS-based lattice. The macro density variable is governed by the standard SIMP formulation, but the local one defines the orthotropic elasticity of the element following material interpolation laws derived by numerical homogenization. Such laws are derived for frame- and shell-based Gyroid, G-prime and Schwarz-D lattices using transversely isotropic elasticity for the bulk material. A nice feature of the approach is that the lower and upper additive manufacturing limits on the local density of the TMPS-based lattices are included properly. The performance of the approach is excellent, and this is demonstrated by solving several three-dimensional benchmark problems, e.g., the optimal macro-layout and local grading of Schwarz-D lattice for the established GE-bracket is identified using the presented approach.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Author(s):  
Ashraf O. Nassef

Auxetic structures are ones, which exhibit an in-plane negative Poisson ratio behavior. Such structures can be obtained by specially designed honeycombs or by specially designed composites. The design of such honeycombs and composites has been tackled using a combination of optimization and finite elements analysis. Since, there is a tradeoff between the Poisson ratio of such structures and their elastic modulus, it might not be possible to attain a desired value for both properties simultaneously. The presented work approaches the problem using evolutionary multiobjective optimization to produce several designs rather than one. The algorithm provides the designs that lie on the tradeoff frontier between both properties.


Author(s):  
Martin Noack ◽  
Arnold Kühhorn ◽  
Markus Kober ◽  
Matthias Firl

AbstractThis paper presents a new FE-based stress-related topology optimization approach for finding bending governed flexible designs. Thereby, the knowledge about an output displacement or force as well as the detailed mounting position is not necessary for the application. The newly developed objective function makes use of the varying stress distribution in the cross section of flexible structures. Hence, each element of the design space must be evaluated with respect to its stress state. Therefore, the method prefers elements experiencing a bending or shear load over elements which are mainly subjected to membrane stresses. In order to determine the stress state of the elements, we use the principal stresses at the Gauss points. For demonstrating the feasibility of the new topology optimization approach, three academic examples are presented and discussed. As a result, the developed sensitivity-based algorithm is able to find usable flexible design concepts with a nearly discrete 0 − 1 density distribution for these examples.


2021 ◽  
Author(s):  
Premanand Sathyanarayanamurthi ◽  
ARUNKUMAR GOPAL

Abstract The Topology Optimization design invariably shall be used in various applications like Aerojet designs, Aircraft Engineering designs and innovative systems for improving the efficiency of structure. The paper emphasizes more on general Topology Optimization design for a rectangular domain. The domain numerically analyzed with defined geometry setting and defined boundary conditions for finding the Stress and displacement. In this Topology Optimization Design synthesis, the result is suitable volume and mass reduction in the Aerojet application parts which further can be taken for Prototype development in 3D printing and experimentally test with safety characteristics and compares Objective functions chosen for design and development. The design can be used for other various automotive and aerospace devices based on deformation level and application of external forces. The Final destination of this design and development ends with passing Fatigue Endurance test cycle test pass condition in Aerojet and automotive vehicles in static and dynamic state.


2012 ◽  
Vol 109 (7) ◽  
pp. 1844-1854 ◽  
Author(s):  
K. Youssef ◽  
J.J. Mack ◽  
M.L. Iruela-Arispe ◽  
L.-S. Bouchard

Sign in / Sign up

Export Citation Format

Share Document