A Numerical Method for Caputo Differential Equations and Application of High-Speed Algorithm

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

In this paper, a numerical algorithm to solve Caputo differential equations is proposed. The proposed algorithm utilizes the R2 algorithm for fractional integration based on the fact that the Caputo derivative of a function f(t) is defined as the Riemann–Liouville integral of the derivative f(ν)(t). The discretized equations are integer order differential equations, in which the contribution of f(ν)(t) from the past behaves as a time-dependent inhomogeneous term. Therefore, numerical techniques for integer order differential equations can be used to solve these equations. The accuracy of this algorithm is examined by solving linear and nonlinear Caputo differential equations. When large time-steps are necessary to solve fractional differential equations, the high-speed algorithm (HSA) proposed by the present authors (Fukunaga, M., and Shimizu, N., 2013, “A High Speed Algorithm for Computation of Fractional Differentiation and Integration,” Philos. Trans. R. Soc., A, 371(1990), p. 20120152) is employed to reduce the computing time. The introduction of this algorithm does not degrade the accuracy of numerical solutions, if the parameters of HSA are appropriately chosen. Furthermore, it reduces the truncation errors in calculating fractional derivatives by the conventional trapezoidal rule. Thus, the proposed algorithm for Caputo differential equations together with the HSA enables fractional differential equations to be solved with high accuracy and high speed.

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

A high-speed algorithm for computing fractional differentiations and fractional integrations in fractional differential equations is proposed. In this algorithm, the stored data are not the function to be differentiated or integrated but the weighted integrals of the function. The intervals of integration for the memory can be increased without loss of accuracy as the computing time-step n increases. The computing cost varies as , as opposed to n 2 of standard algorithms.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1675
Author(s):  
Nur Amirah Zabidi ◽  
Zanariah Abdul Majid ◽  
Adem Kilicman ◽  
Faranak Rabiei

Differential equations of fractional order are believed to be more challenging to compute compared to the integer-order differential equations due to its arbitrary properties. This study proposes a multistep method to solve fractional differential equations. The method is derived based on the concept of a third-order Adam–Bashforth numerical scheme by implementing Lagrange interpolation for fractional case, where the fractional derivatives are defined in the Caputo sense. Furthermore, the study includes a discussion on stability and convergence analysis of the method. Several numerical examples are also provided in order to validate the reliability and efficiency of the proposed method. The examples in this study cover solving linear and nonlinear fractional differential equations for the case of both single order as α∈(0,1) and higher order, α∈1,2, where α denotes the order of fractional derivatives of Dαy(t). The comparison in terms of accuracy between the proposed method and other existing methods demonstrate that the proposed method gives competitive performance as the existing methods.


2020 ◽  
Vol 5 (1) ◽  
pp. 171-188 ◽  
Author(s):  
Esin İlhan ◽  
İ. Onur Kıymaz

AbstractIn this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Inter. of Jour. Analy. and Appl., 16 (1), 83–96, 2018]. To do that, we used generalized M-series, which has a more general form than Mittag-Leffler and hypergeometric functions. We called this generalization as truncated ℳ-series fractional derivative. This new derivative generalizes several fractional derivatives and satisfies important properties of the integer-order derivatives. Finally, we obtain the analytical solutions of some ℳ-series fractional differential equations.


Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


Author(s):  
Najma Ahmed ◽  
Dumitru Vieru ◽  
Fiazud Din Zaman

A generalized mathematical model of the breast and ovarian cancer is developed by considering the fractional differential equations with Caputo time-fractional derivatives. The use of the fractional model shows that the time-evolution of the proliferating cell mass, the quiescent cell mass, and the proliferative function are significantly influenced by their history. Even if the classical model, based on the derivative of integer order has been studied in many papers, its analytical solutions are presented in order to make the comparison between the classical model and the fractional model. Using the finite difference method, numerical schemes to the Caputo derivative operator and Riemann-Liouville fractional integral operator are obtained. Numerical solutions to the fractional differential equations of the generalized mathematical model are determined for the chemotherapy scheme based on the function of "on-off" type. Numerical results, obtained with the Mathcad software, are discussed and presented in graphical illustrations. The presence of the fractional order of the time-derivative as a parameter of solutions gives important information regarding the proliferative function, therefore, could give the possible rules for more efficient chemotherapy.


2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


Sign in / Sign up

Export Citation Format

Share Document