scholarly journals A high-speed algorithm for computation of fractional differentiation and fractional integration

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

A high-speed algorithm for computing fractional differentiations and fractional integrations in fractional differential equations is proposed. In this algorithm, the stored data are not the function to be differentiated or integrated but the weighted integrals of the function. The intervals of integration for the memory can be increased without loss of accuracy as the computing time-step n increases. The computing cost varies as , as opposed to n 2 of standard algorithms.

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

In this paper, a numerical algorithm to solve Caputo differential equations is proposed. The proposed algorithm utilizes the R2 algorithm for fractional integration based on the fact that the Caputo derivative of a function f(t) is defined as the Riemann–Liouville integral of the derivative f(ν)(t). The discretized equations are integer order differential equations, in which the contribution of f(ν)(t) from the past behaves as a time-dependent inhomogeneous term. Therefore, numerical techniques for integer order differential equations can be used to solve these equations. The accuracy of this algorithm is examined by solving linear and nonlinear Caputo differential equations. When large time-steps are necessary to solve fractional differential equations, the high-speed algorithm (HSA) proposed by the present authors (Fukunaga, M., and Shimizu, N., 2013, “A High Speed Algorithm for Computation of Fractional Differentiation and Integration,” Philos. Trans. R. Soc., A, 371(1990), p. 20120152) is employed to reduce the computing time. The introduction of this algorithm does not degrade the accuracy of numerical solutions, if the parameters of HSA are appropriately chosen. Furthermore, it reduces the truncation errors in calculating fractional derivatives by the conventional trapezoidal rule. Thus, the proposed algorithm for Caputo differential equations together with the HSA enables fractional differential equations to be solved with high accuracy and high speed.


Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

A high speed algorithm for computing fractional differentiations and fractional integrations in fractional differential equations is proposed. In this algorithm the stored data is not the history of the function to be differentiated or integrated but the history of the weighted integrals of the function. It is shown that, by the computational method based on the new algorithm, the integration time only increases in proportion to n log n, different from n2 by a standard method, for n steps of integrations of a differential integration.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


Author(s):  
Chandrali Baishya ◽  
P. Veeresha

The Atangana–Baleanu derivative and the Laguerre polynomial are used in this analysis to define a new computational technique for solving fractional differential equations. To serve this purpose, we have derived the operational matrices of fractional integration and fractional integro-differentiation via Laguerre polynomials. Using the derived operational matrices and collocation points, we reduce the fractional differential equations to a system of linear or nonlinear algebraic equations. For the error of the operational matrix of the fractional integration, an error bound is derived. To illustrate the accuracy and the reliability of the projected algorithm, numerical simulation is presented, and the nature of attained results is captured in diverse order. Finally, the achieved consequences enlighten that the solutions obtained by the proposed scheme give better convergence to the actual solution than the results available in the literature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Umer Saeed

PurposeThe purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.Design/methodology/approachThe author has modified the CAS wavelets (mCAS) and utilized it for the solution of Caputo–Hadamard fractional linear/nonlinear initial and boundary value problems. The author has derived and constructed the new operational matrices for the mCAS wavelets. Furthermore, The author has also proposed a method which is the combination of mCAS wavelets and quasilinearization technique for the solution of nonlinear Caputo–Hadamard fractional differential equations.FindingsThe author has proved the orthonormality of the mCAS wavelets. The author has constructed the mCAS wavelets matrix, mCAS wavelets operational matrix of Hadamard fractional integration of arbitrary order and mCAS wavelets operational matrix of Hadamard fractional integration for Caputo–Hadamard fractional boundary value problems. These operational matrices are used to make the calculations fast. Furthermore, the author works out on the error analysis for the method. The author presented the procedure of implementation for both Caputo–Hadamard fractional initial and boundary value problems. Numerical simulation is provided to illustrate the reliability and accuracy of the method.Originality/valueMany scientist, physician and engineers can take the benefit of the presented method for the simulation of their linear/nonlinear Caputo–Hadamard fractional differential models. To the best of the author’s knowledge, the present work has never been proposed and implemented for linear/nonlinear Caputo–Hadamard fractional differential equations.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nasser Aghazadeh ◽  
Amir Mohammadi ◽  
Ghader Ahmadnezhad ◽  
Shahram Rezapour

AbstractBy using a nonlinear method, we try to solve partial fractional differential equations. In this way, we construct the Laguerre wavelets operational matrix of fractional integration. The method is proposed by utilizing Laguerre wavelets in conjunction with the Adomian decomposition method. We present the procedure of implementation and convergence analysis for the method. This method is tested on fractional Fisher’s equation and the singular fractional Emden–Fowler equation. We compare the results produced by the present method with some well-known results.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2585-2600
Author(s):  
Amal Alshabanat ◽  
Bessem Samet

We consider a certain class of coupled systems of fractional differential equations involving ?-Caputo fractional derivatives. A numerical approach is provided for solving this class of systems. The method is based on operational matrix of fractional integration of an arbitrary ?-polynomial basis. A theoretical study related to the numerical scheme and the convergence of the method is presented. Next, several numerical examples are given using different types of polynomials aiming to confirm the efficiency of our approach.


2021 ◽  
Vol 7 (1) ◽  
pp. 804-820
Author(s):  
Sunyoung Bu ◽  

<abstract><p>In this paper, we introduce a mixed numerical technique for solving fractional differential equations (FDEs) by combining Chebyshev collocation methods and a piecewise quadratic quadrature rule. For getting solutions at each integration step, the fractional integration is calculated in two intervals-all previous time intervals and the current time integration step. The solution at the current integration step is calculated by using Chebyshev interpolating polynomials. To remove a singularity which belongs originally to the FDEs, Lagrangian interpolating technique is considered since the Chebyshev interpolating polynomial can be rewritten as a Lagrangian interpolating form. Moreover, for calculating the fractional integral on the whole previous time intervals, a piecewise quadratic quadrature technique is applied to get higher accuracy. Several numerical experiments demonstrate the efficiency of the proposed method and show numerically convergence orders for both linear and nonlinear cases.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document