Soft-Elastohydrodynamic Lubrication Line Contact Analysis on a Strip of Bio-Materials

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Qie-Da Chen ◽  
Wang-Long Li

Abstract The characteristics of anisotropic material, finite deformation, and lubrication in biological system diminish the friction and wear between soft tissues with relative motion. In this research, the lubrication between pleura surfaces in relative motion is analyzed by soft elastohydrodynamic lubrication (soft-EHL) line contact with an equivalent model. The model is a soft, transversely isotropic (TI) elastic strip with finite thickness sliding under a rigid sinusoidal surface, which is used to simulate the surface irregularities, with lubricant in between. The material nonlinearity and the curvature effects due to finite deformation, which are significant in soft-EHL, are considered in the present study. The pressure distribution, film thickness, von Mises stress, and material deformation are analyzed and discussed under various combinations of elastic moduli and Poisson's ratios for the transversely isotropic models. The simulation results reveal that the soft-EHL modeling fit actual result better than the traditional EHL (t-EHL) modeling. The Poisson's ratio νp = 0.1 and νpz = 0.49 situation will have more gentle stress distribution. The present soft-EHL solver can be used to realize some desired stress distributions and to identify the mechanical properties bio-materials under the aids of experiments.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Qie-Da Chen ◽  
Wang-Long Li

Soft elastohydrodynamic lubrication (soft-EHL) is an important mechanism in biotribological systems. The soft-EHL has some distinct differences from the traditional hard-EHL, and a systematic analysis factoring in key features of the “softness” appears to be lacking. In this paper, a complete soft-EHL line-contact model is developed. In the model, the half-space approximation is replaced by the finite thickness analysis; the geometrical and material nonlinearity due to finite deformation is factored in; the surface velocities altered by the curvature effect are considered, and the load balance equation is formulated based on the deformed configuration. Solutions are obtained using a finite element method (FEM). The film thickness, pressure distributions, and material deformation are analyzed and discussed under various entraining velocities, elastic modulus, and material thickness of the soft layer. Comparisons are made between soft-EHL and hard-EHL modeling assumptions. The analyses show that the classical EHL modeling is not suitable for soft materials with high loads. The results show that the finite deformation (Green strain) should be considered in soft-EHL analysis. In the contact region, the hard EHL solver overestimates the pressure distribution and underestimates the film thickness and deformation.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Zhanjiang Wang ◽  
Yinxian Zhang

An elastohydrodynamic lubrication model for a rigid ball in contact with a transversely isotropic half-space is constructed. Reynolds equation, film thickness equation, and load balance equation are solved using the finite difference method, where the surface vertical displacement or deformation of transversely isotropic half-space is considered through the film thickness equation. The numerical methods are verified by comparing the displacements and stresses with those from Hertzian analytical solutions. Furthermore, the effects of elastic moduli, entertainment velocities, and lubricants on fluid pressure, film thickness, and von Mises stress are analyzed and discussed under a constant load. Finally, the modified Hamrock–Dowson equations for transversely isotropic materials to calculate central film thickness and minimum film thickness are proposed and validated.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Li-Ming Chu ◽  
Chien-Yu Chen ◽  
Chin-Ke Tee ◽  
Qie-Da Chen ◽  
Wang-Long Li

The effects of the transversely isotropic coating layer on the elastohydrodynamic lubrication (EHL) circular contact problems are analyzed and discussed under constant load condition. The equivalent elastic modulus for an equivalent isotropic half-space problem is applied to simplify the present transversely isotropic coating. The finite element method (FEM) is utilized to solve the Reynolds equation, the load balance equation, the rheology equations, and the elastic deformation equation simultaneously. The simulation results of the present equivalent model are compared with those of an anisotropic material elasticity matrix to evaluate the applicable range of coating thickness under a fixed relative error. The pressure distribution tends to gradually escalating and concentrating toward the center with increasing longitudinal Young's modulus. The variations of pressure and film thickness become significant as the coating thickness becomes thinner. The deformations of interface are smaller than the deformations of the surface. The film thickness and pressure characteristics of the lubricant are discussed for various parameters. These characteristics are important for the design of the mechanical element with coating layer.


Author(s):  
Bridget Carragher ◽  
David A. Bluemke ◽  
Michael J. Potel ◽  
Robert Josephs

We have investigated the feasibility of restoring blurred electron micrographs. Two related problems have been considered; the restoration of images blurred as a result of relative motion between the specimen and the image plane, and the restoration of images which are rotationally blurred about an axis. Micrographs taken while the specimen is drifting result in images which are blurred in the direction of motion. An example of rotational blurring arises in micrographs of thin sections of helical particles viewed in cross section. The twist of the particle within the finite thickness of the section causes the image to appear rotationally blurred about the helical axis. As a result, structural details, particularly at large distances from the helical axis, will be obscured.


Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tao He ◽  
Jiaxu Wang ◽  
Zhanjiang Wang ◽  
Dong Zhu

Line contact is common in many machine components, such as various gears, roller and needle bearings, and cams and followers. Traditionally, line contact is modeled as a two-dimensional (2D) problem when the surfaces are assumed to be smooth or treated stochastically. In reality, however, surface roughness is usually three-dimensional (3D) in nature, so that a 3D model is needed when analyzing contact and lubrication deterministically. Moreover, contact length is often finite, and realistic geometry may possibly include a crowning in the axial direction and round corners or chamfers at two ends. In the present study, plasto-elastohydrodynamic lubrication (PEHL) simulations for line contacts of both infinite and finite length have been conducted, taking into account the effects of surface roughness and possible plastic deformation, with a 3D model that is needed when taking into account the realistic contact geometry and the 3D surface topography. With this newly developed PEHL model, numerical cases are analyzed in order to reveal the PEHL characteristics in different types of line contact.


Author(s):  
Thayller Weverton Barp ◽  
Bruno Klahr ◽  
Thiago André Carniel ◽  
Eduardo Fancello

Sign in / Sign up

Export Citation Format

Share Document