scholarly journals Large-Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Richard Pichler ◽  
Yaomin Zhao ◽  
Richard Sandberg ◽  
Vittorio Michelassi ◽  
Roberto Pacciani ◽  
...  

Abstract In low-pressure turbines (LPTs), around 60–70% of losses are generated away from end-walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Experimental and numerical studies have shown how the strength and penetration of the secondary flow depends on the characteristics of the incoming end-wall boundary layer. Experimental techniques did shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving computational fluid dynamics (CFD) allowed to dive deep into the details of the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 LPT profile at Re = 120 K and M = 0.59 by benchmarking with experiments and investigating the impact of the incoming boundary layer state. The simulations are carried out with proven Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) solvers to determine if Reynolds-averaged models can capture the relevant flow details with enough accuracy to drive the design of this flow region. Part I of the paper focuses on the critical grid needs to ensure accurate LES and on the analysis of the overall time-averaged flow field and comparison between RANS, LES, and measurements when available. In particular, the growth of secondary flow features, the trace and strength of the secondary vortex system, and its impact on the blade load variation along the span and end-wall flow visualizations are analyzed. The ability of LES and RANS to accurately predict the secondary flows is discussed together with the implications this has on design.

Author(s):  
R. Pichler ◽  
Yaomin Zhao ◽  
R. D. Sandberg ◽  
V. Michelassi ◽  
R. Pacciani ◽  
...  

In low-pressure-turbines (LPT) around 60–70% of losses are generated away from end-walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Experimental and numerical studies have shown how the strength and penetration of the secondary flow depends on the characteristics of the incoming end-wall boundary layer. Experimental techniques did shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving CFD allowed to dive deep into the details of the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 LPT profile at Re = 120K and M = 0.59 by benchmarking with experiments and investigating the impact of the incoming boundary layer state. The simulations are carried out with proven Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) solvers to determine if Reynolds Averaged models can capture the relevant flow details with enough accuracy to drive the design of this flow region. Part I of the paper focuses on the critical grid needs to ensure accurate LES, and on the analysis of the overall time averaged flow field and comparison between RANS, LES and measurements when available. In particular, the growth of secondary flow features, the trace and strength of the secondary vortex system, its impact on the blade load variation along the span and end-wall flow visualizations are analysed. The ability of LES and RANS to accurately predict the secondary flows is discussed together with the implications this has on design.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Michele Marconcini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Vittorio Michelassi ◽  
Richard Pichler ◽  
...  

In low-pressure turbines (LPT) at design point, around 60–70% of losses are generated in the blade boundary layers far from end walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Increasing attention is devoted to these flow regions in industrial design processes. This paper discusses the end-wall flow characteristics of the T106 profile with parallel end walls at realistic LPT conditions, as described in the experimental setup of Duden, A., and Fottner, L., 1997, “Influence of Taper, Reynolds Number and Mach Number on the Secondary Flow Field of a Highly Loaded Turbine Cascade,” Proc. Inst. Mech. Eng., Part A, 211(4), pp.309–320. Calculations are carried out by both Reynolds-averaged Navier–Stokes (RANS), due to its continuing role as the design verification workhorse, and highly resolved large eddy simulation (LES). Part II of this paper focuses on the loss generation associated with the secondary end-wall vortices. Entropy generation and the consequent stagnation pressure losses are analyzed following the aerodynamic investigation carried out in the companion paper (GT2018-76233). The ability of classical turbulence models generally used in RANS to discern the loss contributions of the different vortical structures is discussed in detail and the attainable degree of accuracy is scrutinized with the help of LES and the available test data. The purpose is to identify the flow features that require further modeling efforts in order to improve RANS/unsteady RANS (URANS) approaches and make them able to support the design of the next generation of LPTs.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
V. Michelassi ◽  
J. G. Wissink

Incompressible large eddy simulation and direct numerical simulation of a low-pressure turbine atRe=5.18×104and1.48×105with discrete incoming wakes are analyzed to identify the turbulent kinetic energy generation mechanism outside of the blade boundary layer. The results highlight the growth of turbulent kinetic energy at the bow apex of the wake and correlate it to the stress-strain tensors relative orientation. The production rate is analytically split according to the principal axes, and then terms are computed by using the simulation results. The analysis of the turbulent kinetic energy is followed both along the discrete incoming wakes and in the stationary frame of reference. Both direct numerical and large eddy simulation concur in identifying the same production mechanism that is driven by both a growth of strain rate in the wake, first, followed by the growth of turbulent shear stress after. The peak of turbulent kinetic energy diffuses and can eventually reach the suction side boundary layer for the largest Reynolds number investigated here with higher incidence angle. As a consequence, the local turbulence intensity outside the boundary layer can grow significantly above the free-stream level with a potential impact on the suction side boundary layer transition mechanism.


1982 ◽  
Vol 104 (2) ◽  
pp. 467-478 ◽  
Author(s):  
B. Lakshminarayana ◽  
A. Ravindranath

This paper reports the experimental study of the three-dimensional characteristics of the mean velocity of the rotor wake inside the annulus- and hub-wall boundary layers. The measurements were taken with a rotating three-sensor hot wire behind the rotor. This set of measurements probably represents the first set of comprehensive measurements taken inside the annulus- and hub-wall boundary layers. The wake was surveyed at several radial locations inside the boundary layer region and at several axial locations. Interaction of the wake with the annulus-wall boundary layer, secondary flow, tip-leakage flow, and the trailing vortex system results in slower decay and larger width of the wake. The presence of a strong vortex and its merger with the wake is also observed. The end-wall boundary layers and the secondary flow were found to have a substantial effect on both the decay characteristics and the profile of the wake. These and other measurements are reported and interpreted in this paper.


Author(s):  
V Michelassi ◽  
J. G. Wissink ◽  
W Rodi

The unsteady periodic flow in a low-pressure (LP) prismatic turbine vane with incoming wakes is computed by direct numerical simulation (DNS), large eddy simulation (LES) and unsteady Reynolds-averaged Navier—Stokes simulations (URANSs). The results are compared with existing measurements at a Reynolds number Re = 5.18 × 104 which reveal the presence of a large unsteady stalled region on the suction side. Both DNS and LES suggest that the boundary layer separates while being still laminar, with subsequent turbulent reattachment. Several URANSs with and without a transition model and a constraint on the turbulence time-scale designed to prevent excessive production in the stagnation region are analysed and compared with the DNS and LES. The useful information provided by DNS and LES has made it possible to improve the results of the URANSs, which ensure a fair reproduction of the flow, especially in terms of blade load and losses, although they partly fail to detail the complex wake—boundary layer interaction in the separated flow region.


Sign in / Sign up

Export Citation Format

Share Document