Fabrication and Experiment of an Automatic Continuum Robot System Using Image Recognition

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yeong-min Na ◽  
Hyun-seok Lee ◽  
Jong-kyu Park

Abstract This paper proposes a continuum robot that can be controlled automatically using image recognition. The proposed robot can operate in narrower spaces than the existing robots composed of links and joints. In addition, because it is automatically controlled through image recognition, the robot can be operated irrespective of the human controller's skill level. The manipulator is divided into two stages, with three wires connected to each stage to minimize the energy used to control the manipulator posture. The manipulator's posture is controlled by adjusting the length of the wire, similar to the relaxation and contraction of the muscles. Denavit–Hartenberg transformation and the Monte Carlo method were used to analyze the robot's kinematics and workspace. In a performance test, an experimental plate with nine targets was fabricated and the manipulator speed was adjusted to 5, 10, and 20 mm/s. Experimental results show that the manipulator was automatically controlled and reached all targets, with errors of 2.58, 3.28, and 9.18 mm.

Author(s):  
Kerri L. Spencer ◽  
Jeffrey R. Friedman ◽  
Terry B. Sullivan

This paper focuses on the calculation of the test uncertainty of an ASME PTC 46 [1], overall plant performance test of a combined cycle by two separate methods. It compares the combined cycle corrected plant output and heat rate systematic uncertainty results that are generated using monovariate perturbation analysis with the Monte Carlo method. The Monte Carlo method has not been used widely in power plant performance testing applications. It offers insights into the results of the Monte Carlo analysis method, which is less intuitive than the conventional method. This study shows that utilizing two distinctly different methods of calculation of test uncertainty serves to corroborate assumptions, or to isolate flaws in one or both methods. In developing the method for calculation of test uncertainty, the authors conclude that it is prudent to validate the calculation method of choice of test uncertainty, and to consider the correlations in measurement uncertainties. Also discussed in detail are the impact of correlated uncertainty assumptions, and recommendations on their application. Correlated uncertainty has not been extensively discussed in the literature concerning specific applications in performance testing, although it should be a critical consideration in any uncertainty analysis. Details of determination of instrumentation uncertainty, measurement uncertainty of a parameter, and calculation of sensitivity factors are included in this paper.


2019 ◽  
Vol 12 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Afrouz Asgari ◽  
Mansour Ashoor ◽  
Leila Sarkhosh ◽  
Abdollah Khorshidi ◽  
Parvaneh Shokrani

Objective: The characterization of cancerous tissue and bone metastasis can be distinguished by accurate assessment of accumulated uptake and activity from different radioisotopes. The various parameters and phenomena such as calibration factor, Compton scattering, attenuation and penetration intrinsicallyinfluence calibration equation, and the qualification of images as well. Methods: The camera calibration factor (CF) translates reconstructed count map into absolute activity map, which is determined by both planar and tomographic scans using different phantom geometries. In this study, the CF for radionuclides of Tc-99m and Sm-153 in soft tissue and bone was simulated by the Monte Carlo method, and experimental results were obtained in equivalent tissue and bone phantoms. It may be employed for the simultaneous correction of the scattering and attenuation rays interacted with the camera, leading to corrected counts. Also, the target depth (d) may be estimated by a combination of scattering and photoelectric functions, which we have published before. Results: The calibrated equations for soft tissue phantom for the radionuclides were obtained by RTc = - 10d+ 300 and RSm = -8d + 100, and the relative errors between the simulated and experimental results were 4.5% and 3.1%, respectively. The equations for bone phantom were RTc = -30d + 300 and RSm = - 10d + 100, and the relative errors were 5.4% and 5.6%. The R and d are in terms of cpm/mCi and cm. Besides, the collimators' impact was evaluated on the camera response, and the relevant equations were obtained by the Monte Carlo method. The calibrated equations as a function of various radiation angles on the center of camera's cells without using collimator indicated that both sources have the same quadratic coefficient by -2E-08 and same vertical width from the origin by 8E-05. Conclusion: The presented procedure may help determine the absorbed dose in the target and likewise optimize treatment planning.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


1999 ◽  
Vol 72 (1) ◽  
pp. 68-72
Author(s):  
M. Yu. Al’es ◽  
A. I. Varnavskii ◽  
S. P. Kopysov

Sign in / Sign up

Export Citation Format

Share Document