An Expanding Cavity Model for Indentation Analysis of Shape Memory Alloys

2019 ◽  
Vol 87 (3) ◽  
Author(s):  
J. Anuja ◽  
R. Narasimhan ◽  
U. Ramamurty

Abstract The mechanical and functional responses of shape memory alloys (SMAs), which are often used in small volume applications, can be evaluated using instrumented indentation tests. However, deciphering the indentation test results in SMAs can be complicated due to the combined effects of the non-uniform state of stress underneath the indenter and stress-induced phase transformation. To address this issue, an expanding cavity model (ECM) applicable to spherical indentation of SMAs is developed in this work based on an analytical solution for an internally pressurized hollow sphere. Analytical expressions for key indentation parameters such as the mean contact pressure and size of the transforming zone are obtained, whose validity is evaluated by recourse to finite element simulations and published experimental data for a Ni–Ti alloy. It is shown that the ECM predicts the above parameters reasonably well for indentation strains varying from 0.01 to 0.04. Also, a method is proposed to determine the critical stress required to initiate phase transformation under uniaxial compression based on the application of the ECM to interpret the indentation stress–strain response.

Author(s):  
Francis R. Phillips ◽  
Daniel Martin ◽  
Dimitris C. Lagoudas ◽  
Robert W. Wheeler

Shape memory alloys (SMAs) are unique materials capable of undergoing a thermo-mechanically induced, reversible, crystallographic phase transformation. As SMAs are utilized across a variety of applications, it is necessary to understand the internal changes that occur throughout the lifetime of SMA components. One of the key limitations to the lifetime of a SMA component is the response of SMAs to fatigue. SMAs are subject to two kinds of fatigue, namely structural fatigue due to cyclic mechanical loading which is similar to high cycle fatigue, and functional fatigue due to cyclic phase transformation which typical is limited to the low cycle fatigue regime. In cases where functional fatigue is due to thermally induced phase transformation in contrast to being mechanically induced, this form of fatigue can be further defined as actuation fatigue. Utilizing X-ray computed microtomography, it is shown that during actuation fatigue, internal damage such as cracks or voids, evolves in a non-linear manner. A function is generated to capture this non-linear internal damage evolution and introduced into a SMA constitutive model. Finally, it is shown how the modified SMA constitutive model responds and the ability of the model to predict actuation fatigue lifetime is demonstrated.


2001 ◽  
Vol 123 (3) ◽  
pp. 245-250 ◽  
Author(s):  
S. Kucharski ◽  
Z. Mro´z

The identification method of hardening parameters specifying stress-strain curve is proposed by applying spherical indentation test and measuring the penetration depth during loading and unloading. The loading program is composed of a geometric sequence of loading and partial unloading steps from which the variation of permanent penetration with load level is determined. This data is used for specification of two parameters k and m occurring in the plastic hardening curve εp=σ/k1/m, where εp denotes the plastic strain.


2021 ◽  
Vol 1036 ◽  
pp. 20-31
Author(s):  
Jun Jie Ye ◽  
Zhi Rong He ◽  
Kun Gang Zhang ◽  
Yu Qing Du

Ti-Ni based shape memory alloys (SMAs) are of excellent shape memory effect, superelasticity and damping property. These properties of the alloys can be fully displayed only after proper heat treatment. In this paper, the research progresses of the effect of the heat treatment on the microstructure, phase composition, phase transformation behaviors and shape memory properties in Ti-Ni based SMAs are reviewed, the correlation influence mechanism is summarized, and the future research directions in this field are pointed out. It is expected to provide reference for the development of Ti-Ni based SMAs and their heat treatment technologies.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 345 ◽  
Author(s):  
Weiya Li ◽  
Chunwang Zhao

The microstructure and martensitic transformation behavior of Ni50−xTi50Lax (x = 0.1, 0.3, 0.5, 0.7) shape memory alloys were investigated experimentally. Results show that the microstructure of Ni50−xTi50Lax alloys consists of a near-equiatomic TiNi matrix, LaNi precipitates, and Ti2Ni precipitates. With increasing La content, the amounts of LaNi and Ti2Ni precipitates demonstrate an increasing tendency. The martensitic transformation start temperature increases gradually with increasing La content. The Ni content is mainly responsible for the change in martensite transformation behavior in Ni50−xTi50Lax alloys.


Sign in / Sign up

Export Citation Format

Share Document