Numerical Investigation on Heat Transfer of Supercritical Water With a Variable Turbulent Prandtl Number Model

2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Xiangfei Kong ◽  
Dongfeng Sun ◽  
Lingtong Gou ◽  
Siqi Wang ◽  
Nan Yang ◽  
...  

Abstract Turbulent Prandtl number (Prt) has a great impact on the performance of turbulence models in predicting heat transfer of supercritical fluids. Unrealistic treatment of Prt may lead to large deviations of the prediction results from experimental data under supercritical conditions. In this study, the effect of Prt on heat transfer of supercritical water was extensively studied by using shear stress transport (SST) k–ω turbulence model, and the results suggested that using the existing Prt models would lead to failures in predicting the heat transfer characteristics of supercritical water under deteriorated heat transfer (dht) conditions. A new variable Prt model was proposed with the Prt varied with pressure, turbulent viscosity ratio, and molecular Prandtl number. The new model was validated by comparing the numerical results with the corresponding experimental data, and it was found that the new variable Prt model exhibited better performance on reproducing the dht of supercritical water in vertical tubes than those of the existing Prt models.

Author(s):  
Georgii Glebovich Yankov ◽  
Vladimir Kurganov ◽  
Yury Zeigarnik ◽  
Irina Maslakova

Abstract The review of numerical studies on supercritical pressure (SCP) coolants heat transfer and hydraulic resistance in turbulent flow in vertical round tubes based on Reynolds-averaged Navier-Stokes (RANS) equations and different models for turbulent viscosity is presented. The paper is the first part of the general analysis, the works based on using algebraic turbulence models of different complexity are considered in it. The main attention is paid to Petukhov-Medvetskaya and Popov et al. models. They were developed especially for simulating heat transfer in tubes of the coolants with significantly variable properties (droplet liquids, gases, SCP fluids) under heating and cooling conditions. These predictions were verified on the entire reliable experimental data base. It is shown that in the case of turbulent flow in vertical round tubes these models make it possible predicting heat transfer and hydraulic resistance characteristics of SCP flows that agree well with the existed reliable experimental data on normal and certain modes of deteriorated heat transfer, if significant influence of buoyancy and radical flow restructuring are absent. For the more complicated cases than a flow in round vertical tubes, as well as for the case of rather strong buoyancy effect, more sophisticated prediction techniques must be applied. The state-of-the-art of these methods and the problems of their application are considered in the Part II of the analysis.


Author(s):  
Amjad Farah ◽  
Glenn Harvel ◽  
Igor Pioro

Computational Fluid Dynamics (CFD) is a numerical approach to modelling fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system. The turbulence models employed in CFD are a set of equations that determine the turbulence transport terms in the mean flow equations. They are based on hypotheses about the process of turbulence, and as such require empirical input in the form of constants or functions, in order to achieve closure. By introducing a set of empirical constants to a model, that model then becomes valid for certain flow conditions, or for a range of flows. Of those constants, the turbulent Prandtl number appears in multiple equations; energy, momentum, turbulent kinetic energy, turbulent kinetic energy dissipation rate, etc. and the value it takes in each equation is different and chosen empirically to fit a wide range of flows in the subcritical region. The studies that attempt to find the effect of varying the turbulent Pr number on simulation results, often only mention one number; presumably the one that appears in the energy equation (although it is never explicitly explained). The rest of the constants are treated as universally acceptable for generalized flow and not tested for their effect on flow parameters. A numerical study on heat transfer to supercritical water flowing in a vertical tube is carried out using the ANSYS FLUENT code and employing the Realizable k-ε (RKE) and the SST k-ε turbulence models. The 3-D mesh consists of a 1/8 slice (45° radially) of a bare tube. The study explored the effects of turbulent Pr numbers, and their variations, in order to understand their significance, and to build on previous knowledge to modify the turbulence models and achieve higher accuracy in simulating experimental conditions. The numerical results of 3D flow and thermal distributions under normal and deteriorated heat transfer conditions are compared to experimental results. The distributions of temperature and turbulence levels are used to understand the underlying phenomena of the heat transfer deterioration in supercritical water flows. Reducing the energy turbulent Pr number produced the most accurate prediction of the deterioration in heat transfer, by altering the production term due to buoyancy, which appears in the equations for turbulent kinetic energy as well as its dissipation rate. The buoyancy forces in upward flows act to reduce the turbulent shear stress, resulting in localized increase in wall temperatures.


Author(s):  
Bo Zhang ◽  
Jianqiang Shan ◽  
Jing Jiang

CANDU supercritical water reactor (SCWR) offers advantages in the areas of sustainability, economics, safety and reliability and proliferation resistance. However, there is still a big deficiency in understanding and prediction of heat transfer behaviour in supercritical fluids. In this paper, heat transfer is numerically investigated on supercritical water for three-dimensional horizontal flows. Three ε-type turbulence models are tested and the numerical results are compared with experimental data. Based on the result, the standard k-ε turbulence model with enhanced wall treatment is recommended. The effect of the buoyancy and heat transfer deterioration is also analyzed, and the criteria for onset of buoyancy effects is evaluated. The quantity Gr/Re2.7 recommended by Jackson et al. (1975) gives a capacity to predict the buoyancy.


2016 ◽  
Vol 819 ◽  
pp. 392-400 ◽  
Author(s):  
Ahmad Indra Siswantara ◽  
Budiarso ◽  
Steven Darmawan

Inverse-Turbulent Prandtl number (α) is an important parameter in RNG k-ε turbulence models since it affects the ratio of molecular viscosity and turbulent viscosity. In curved pipe, this highly affects the model prediction to a large range eddy-scale flow. According to Yakhot & Orzag, the α range from 1-1.3929 has not been investigated in detail in curved pipe flow (Yakhot & Orszag, 1986) and specific Re. This paper varied inverse-turbulent Prandtl number α to 1-1.3 in RNG k-ε turbulence model on cylindrical curved pipe in order to obtain the optimum value of α to predict unfully-developed flow in the curve with curve ratio R/D of 1.607. Analysis was conducted numericaly with inlet specified Re of 40900 which was generated from the experiment at α 1, 1.1, 1.2, 1.3. Wall surface roughness is not considered in this paper. With assumption that thermal diffusivity is always dominant to turbulent viscosity, higher Inverse-turbulent Prandtl number represent domination of turbulent viscosity to molecular viscosity of the flow and predict to have more interaction between large scale eddy to small scale eddy as well. The results show the use of α = 1.3 has increased the turbulent kinetic energy by 7% and the turbulent dissipation by 5% compared to general inverse-turbulent Prandtl number of 1. The value difference shows that the use of higher α on RNG turbulence model described more interaction between eddies in secondary and swirling flow at pipe curve at Re = 40900.


Author(s):  
Dawid Taler

Purpose The purpose of this paper is to develop new semi-empirical heat transfer correlations for turbulent flow of liquid metals in the tubes, and then to compare these correlations with the experimental data. The Prandtl and Reynolds numbers can vary in the ranges: 0.0001 ≤ Pr ≤ 0.1 and 3000 ≤ Re ≤ 106. Design/methodology/approach The energy conservation equation averaged by Reynolds was integrated using the universal velocity profile determined experimentally by Reichardt for the turbulent tube flow and four different models for the turbulent Prandtl number. Turbulent heat transfer in the circular tube was analyzed for a constant heat flux at the inner surface. Some constants in different models for the turbulent Prandtl number were adjusted to obtain good agreement between calculated and experimentally obtained Nusselt numbers. Subsequently, new correlations for the Nusselt number as a function of a Peclet number was proposed for different models of the turbulent Prandtl number. Findings The inclusion of turbulent Prandtl number greater than one and the experimentally determined velocity profile of the fluid in the tube while solving the energy conservation equation improved the compatibility of calculated Nusselt numbers, with Nusselt numbers determined experimentally. The correlations proposed in the paper have a sound theoretical basis and give Nusselt number values that are in good agreement with the experimental data. Research limitations/implications Heat transfer correlations proposed in this paper were derived assuming a constant heat flux at the inner surface of the tube. However, they can also be used for a constant wall temperature, as for the turbulent flow (Re > 3,000), the relative difference between the Nusselt number for uniform wall heat flux and uniform wall temperature is very low. Originality/value Unified, systematic approach to derive correlations for the Nusselt number for liquid metals was proposed in the paper. The Nusselt number was obtained from the solution of the energy conservation equation using the universal velocity profile and eddy diffusivity determined experimentally, and various models for the turbulent Prandtl number. Four different relationships for the Nusselt number proposed in the paper were compared with the experimental data.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Abdalla Agrira ◽  
David R. Buttsworth ◽  
Mior A. Said

Due to the inherently unsteady environment of reciprocating engines, unsteady thermal boundary layer modeling may improve the reliability of simulations of internal combustion engine heat transfer. Simulation of the unsteady thermal boundary layer was achieved in the present work based on an effective variable thermal conductivity from different turbulent Prandtl number and turbulent viscosity models. Experiments were also performed on a motored, single-cylinder spark-ignition engine. The unsteady energy equation approach furnishes a significant improvement in the simulation of the heat flux data relative to results from a representative instantaneous heat transfer correlation. The heat flux simulated using the unsteady model with one particular turbulent Prandtl number model agreed with measured heat flux in the wide open and fully closed throttle cases, with an error in peak values of about 6% and 35%, respectively.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Mahdi Mohseni ◽  
Majid Bazargan

Numerical results show that at supercritical pressures, once the buoyancy force increases, the effect of the turbulent Prandtl number, Prt, on convective heat transfer becomes considerable. This phenomenon has not been adequately addressed in the literature. In this study, the effect of the turbulent Prandtl number on the rate of heat transfer in both enhanced and deteriorated regimes of heat transfer to supercritical fluid flows has been extensively investigated. Having realized that variations of the turbulent Prandtl number can affect the model predictions so greatly, a new correlation to express the changes of Prt with respect to flow conditions in a supercritical environment is developed. Effects of various important parameters such as heat flux, mass flux, and fluid pressure are included in the proposed correlation. This correlation has been modified to be applicable for different supercritical fluids. The comparison with various experimental data shows that by implementing the new correlation of Prt in the numerical code, it is possible to significantly improve the simulation results. Such a correlation seems to be the first one introduced in the literature for a supercritical fluid flow.


Volume 4 ◽  
2004 ◽  
Author(s):  
X. Cheng ◽  
A. Batta ◽  
H. Y. Chen ◽  
N. I. Tak

The present paper gives a brief literature review on turbulent heat transfer in heavy liquid metals (HLM), especially liquid lead-bismuth eutectic (LBE). Some models available in the open literature on heat transfer and turbulent Prandtl number are assessed. In addition, CFD analysis is carried out for circular tube geometries. The effect of turbulence models, mesh structure and turbulent Prandtl number on the numerical results is studied. Application of ε-type turbulence models with scalable wall function shows less dependence of the numerical results on mesh structure than the ω-type turbulence models with automatic wall treatment. The turbulent Prandtl number affects strongly the heat transfer performance. Comparison between the CFD results, heat transfer correlations and heat transfer test data reveals a decrease in turbulent Prandtl number by increasing Reynolds number. Based on the results achieved, recommendations are made on correlations of heat transfer and turbulent Prandtl number for LBE flows.


Sign in / Sign up

Export Citation Format

Share Document