Simulation of the Multiphysical Coupling Behavior of Active Hearing Mechanism Within Spiral Cochlea

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
J. Ma ◽  
W. Yao ◽  
B. Hu

Abstract Nobel Laureate von Békésy first presented traveling wave theory, which explains the vibration mechanism of the basilar membrane (BM) of cochlea in 1960, and thus the mysterious veil of passive phonoreceptive mechanism of human cochlea was unveiled. However, the interpretation of active phonoreceptive mechanism of human cochlea has been a major medical problem for mankind. The active mechanism can be reflected in structures and the perilymph where a series of complex coupling nonlinear motion process is observed in the cochlea. Because the cochlea is small and complex, vibration data of the whole BM are not yet available from existing experiments. To address the problem, first, the motion equations of the organ of Corti (OHC) are established, and the circuit equations of the outer hair cells (OHCs) in the perilymph and the relationship between the motion of the outer hair cells and the electromotile force are derived. Then the active feedback force on the BM is obtained. Finally, an analytical–numerical combination model, where both macrostructures and microstructures of cochlea are included, is established. The model not only vividly depicts the spatial helical body and biological materials of the cochlea but also reflects the fluid–solid coupling nonlinear motion of cochlear structures in the electrical environment. Thus, the active hearing mechanism of cochlea is revealed.

2020 ◽  
Author(s):  
C. Elliott Strimbu ◽  
Yi Wang ◽  
Elizabeth S. Olson

ABSTRACTThe mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC) generated forces driven in part by the endocochlear potential (EP), the ~ +80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the EP in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea’s organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions (DPOAE) were monitored at the same times. Following the injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost their BF peak and showed low-pass responses, but retained nonlinearity, indicating that OHC electromotility was still operational. Thus, while electromotility is presumably necessary for amplification, its presence is not sufficient for amplification. The BF peak recovered nearly fully within 2 hours, along with a non-monotonic DPOAE recovery that suggests that physical shifts in operating condition are a final step in the recovery process.SIGNIFICANCEThe endocochlear potential, the +80 mV potential difference across the fluid filled compartments of the cochlea, is essential for normal mechanoelectrical transduction, which leads to receptor potentials in the sensory hair cells when they vibrate in response to sound. Intracochlear vibrations are boosted tremendously by an active nonlinear feedback process that endows the cochlea with its healthy sensitivity and frequency resolution. When the endocochlear potential was reduced by an injection of furosemide, the basilar membrane vibrations resembled those of a passive cochlea, with broad tuning and linear scaling. The vibrations in the region of the outer hair cells also lost the tuned peak, but retained nonlinearity at frequencies below the peak, and these sub-BF responses recovered fairly rapidly. Vibration responses at the peak recovered nearly fully over 2 hours. The staged vibration recovery and a similarly staged DPOAE recovery suggests that physical shifts in operating condition are a final step in the process of cochlear recovery.


1983 ◽  
Vol 76 (4) ◽  
pp. 269-278 ◽  
Author(s):  
A Wright

The human cochlea has been preserved from post-mortem autolysis by perfusion with a fixative shortly after death. Subsequent staining with osmium permits dissection of this structure from the temporal bone. (Temporal bones were obtained from eight patients). When prepared for examination in the scanning electron microscope, the auditory sensory cells are found to be located in the band-like organ of Corti which extends the length of the cochlea. The sensory cells have a cluster of stereocilia projecting from their free upper surface and because of this are called hair cells. The hair cells are divided into two separate groups: a single row of inner hair cells, which show little variation in their surface appearance along the length of the cochlea, and three or four rows of outer hair cells whose cilia change in conformation and increase in length along the cochlea.


1979 ◽  
Vol 27 (11) ◽  
pp. 1539-1542 ◽  
Author(s):  
P A Santi ◽  
D C Muchow

This research describes a procedure for a morphometric analysis of the organ of Corti and stria vascularis in the chinchilla. In nine normal cochleae the length of the basilar membrane and the stria vascularis measured 18.47 and 25.22 mm, respectively. An average of 1910 inner and 7501 outer hair cells were present while an average of 15 inner and 90 outer hair cells were absent. In all cochleae examined there were always some missing hair cells in varying numbers even though the animals had no known ototoxic exposure. Stria area, width and thickness increased from the cochlear apex toward the base. Consistency of changes in stria dimensions among animals was enhanced by expressing position in terms of percentage stria length rather than distance as such. Total stria volume was estimated at 0.15 microliter.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Michio Murakoshi ◽  
Sho Suzuki ◽  
Hiroshi Wada

In the mammalian auditory system, the three rows of outer hair cells (OHCs) located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposure and ototoxic acid, cause functional loss of OHCs in one, two, or all three rows. However, the degree of decrease in cochlear amplification caused by such functional losses remains unclear. In the present study, a finite element model of a cross section of the gerbil cochlea was constructed. Then, to determine effects of the functional losses of OHCs on the cochlear amplification, changes in the displacement amplitude of the basilar membrane (BM) due to the functional losses of OHCs were calculated. Results showed that the displacement amplitude of the BM decreases significantly when a single row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.


2003 ◽  
Vol 90 (1) ◽  
pp. 444-455 ◽  
Author(s):  
Jiefu Zheng ◽  
Chunfu Dai ◽  
Peter S. Steyger ◽  
Youngki Kim ◽  
Zoltan Vass ◽  
...  

Capsaicin, the vanilloid that selectively activates vanilloid receptors (VRs) on sensory neurons for noxious perception, has been reported to increase cochlear blood flow (CBF). VR-related receptors have also been found in the inner ear. This study aims to address the question as to whether VRs exist in the organ of Corti and play a role in cochlear physiology. Capsaicin or the more potent VR agonist, resiniferatoxin (RTX), was infused into the scala tympani of guinea pig cochlea, and their effects on cochlear sensitivity were investigated. Capsaicin (20 μM) elevated the threshold of auditory nerve compound action potential and reduced the magnitude of cochlear microphonic and electrically evoked otoacoustic emissions. These effects were reversible and could be blocked by a competitive antagonist, capsazepine. Application of 2 μM RTX resulted in cochlear sensitivity alterations similar to that by capsaicin, which could also be blocked by capsazepine. A desensitization phenomenon was observed in the case of prolonged perfusion with either capsaicin or RTX. Brief increase of CBF by capsaicin was confirmed, and the endocochlear potential was not decreased. Basilar membrane velocity (BM) growth functions near the best frequency and BM tuning were altered by capsaicin. Immunohistochemistry study revealed the presence of vanilloid receptor type 1 of the transient receptor potential channel family in the hair cells and supporting cells of the organ of Corti and the spiral ganglion cells of the cochlea. The results indicate that the main action of capsaicin is on outer hair cells and suggest that VRs in the cochlea play a role in cochlear homeostasis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenxuan He ◽  
Tianying Ren

AbstractAlthough auditory harmonic distortion has been demonstrated psychophysically in humans and electrophysiologically in experimental animals, the cellular origin of the mechanical harmonic distortion remains unclear. To demonstrate the outer hair cell-generated harmonics within the organ of Corti, we measured sub-nanometer vibrations of the reticular lamina from the apical ends of the outer hair cells in living gerbil cochleae using a custom-built heterodyne low-coherence interferometer. The harmonics in the reticular lamina vibration are significantly larger and have broader spectra and shorter latencies than those in the basilar membrane vibration. The latency of the second harmonic is significantly greater than that of the fundamental at low stimulus frequencies. These data indicate that the mechanical harmonics are generated by the outer hair cells over a broad cochlear region and propagate from the generation sites to their own best-frequency locations.


Author(s):  
Janos Vincze ◽  
Gabriella Vincze-Tiszay

After Békésy the stapes base moves around two axes: for weaker sounds - rotates around its transverse axis; in case of a strong sound - it moves around its longitudinal axis. Békésy’s place theory cannot alone explain the frequency-distinguishing ability of the ear. However, the existence of active amplification further sharpens the frequency-analysing ability of the cochlea. In addition, the different frequency sensitivity of afferent nerve fibres of inner hair cells synergizes with the mechanisms above. Peaked resonance curves are consequences of different threshold sensitivities of nerves connecting to individual hair cells. The frequency, which belongs to the lowest stimulus threshold, is called the characteristic frequency of a nerve. This place assignment of nerve frequencies are formed by the following mechanism in the cochlea. The place of amplitude maxima of progressive waves excited in the basilar membrane shows slight frequency dependence. The mechanism of active amplification forming in outer hair cells amplifies and sharpens the resonances of the basilar membrane. In 1961, nobleman Georg von Békésy received the Nobel Prize in Medicine: “for his discoveries of the physical mechanisms of stimulation within the cochlea”.


1975 ◽  
Vol 84 (4) ◽  
pp. 443-458 ◽  
Author(s):  
Catherine A. Smith

Nerve fibers with distinctive branching patterns have been demonstrated in guinea pigs by use of the Golgi stain. The cochlear nerve fibers in the basal turn tend to supply a limited segment of the basilar membrane and have most endings on a single row of hair cells. The efferent olivocochlear nerve fibers ramify in a manner which varies from base to apex. Some efferents which terminate on outer hair cells also give branches which course in the inner spiral bundle. Other nerve fibers were studied in the spiral lamina which did not penetrate into the organ of Corti.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haim Sohmer

The three modes of auditory stimulation (air, bone and soft tissue conduction) at threshold intensities are thought to share a common excitation mechanism: the stimuli induce passive displacements of the basilar membrane propagating from the base to the apex (slow mechanical traveling wave), which activate the outer hair cells, producing active displacements, which sum with the passive displacements. However, theoretical analyses and modeling of cochlear mechanics provide indications that the slow mechanical basilar membrane traveling wave may not be able to excite the cochlea at threshold intensities with the frequency discrimination observed. These analyses are complemented by several independent lines of research results supporting the notion that cochlear excitation at threshold may not involve a passive traveling wave, and the fast cochlear fluid pressures may directly activate the outer hair cells: opening of the sealed inner ear in patients undergoing cochlear implantation is not accompanied by threshold elevations to low frequency stimulation which would be expected to result from opening the cochlea, reducing cochlear impedance, altering hydrodynamics. The magnitude of the passive displacements at threshold is negligible. Isolated outer hair cells in fluid display tuned mechanical motility to fluid pressures which likely act on stretch sensitive ion channels in the walls of the cells. Vibrations delivered to soft tissue body sites elicit hearing. Thus, based on theoretical and experimental evidence, the common mechanism eliciting hearing during threshold stimulation by air, bone and soft tissue conduction may involve the fast-cochlear fluid pressures which directly activate the outer hair cells.


Sign in / Sign up

Export Citation Format

Share Document