Investigation of the Mechanical Behavior of Electroless Ni–P–Ti Composite Coatings

Author(s):  
Zhi Li ◽  
Zoheir Farhat ◽  
George Jarjoura ◽  
Eman Fayyad ◽  
Aboubakr Abdullah ◽  
...  

Abstract To improve the toughness of Ni–P coatings, NiTi superelastic particles were introduced into the Ni–P matrix through the electroless co-depositing of Ni–P and Ti particles and annealing Ni–P–Ti coatings. The mechanical properties of the coatings were determined through bend testing bilayer specimens and tensile testing the standalone coating. The effects of Ti content and annealing on Young’s modulus, toughness, and fracture strength were investigated. After annealing, the toughness and strength improved considerably. The formation of the superelastic NiTi phase after annealing led to the improvement of toughness and fracture strength of the composite coating through transformation toughening, crack deflection, bridging, and shielding. Different toughening mechanisms interacted with each other and operated together. This contributed to the enhancement of toughness and fracture strength.

2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2009 ◽  
Vol 25 (5) ◽  
pp. 361-366 ◽  
Author(s):  
X. G. Hu ◽  
W. J. Cai ◽  
Y. F. Xu ◽  
J. C. Wan ◽  
X. J. Sun

1996 ◽  
Vol 74 (3) ◽  
pp. 99-102 ◽  
Author(s):  
Jiao-ning Tang ◽  
You-bei Xie

Wear ◽  
2000 ◽  
Vol 239 (1) ◽  
pp. 111-116 ◽  
Author(s):  
V.V.N Reddy ◽  
B Ramamoorthy ◽  
P.Kesavan Nair

MRS Advances ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Eunice Cunha ◽  
Fernando Duarte ◽  
M. Fernanda Proença ◽  
M. Conceição Paiva

ABSTRACTGraphite nanoplates (GnP) have recently attracted attention as an economically viable alternative for the development of functional and structural nanocomposites. The incorporation of GnP into waterborne polyurethane (WPU) with loadings from 0.1 to 10 wt.% was studied. The mechanical properties of the composite films were assessed by tensile testing showing an increase of the Young’s modulus up to 48%. The electrical conductivity increased by 9 orders of magnitude and the water vapor permeability of the composite films decreased 57% for composites containing 5.0 wt.% of GnP.


2022 ◽  
Vol 1048 ◽  
pp. 72-79
Author(s):  
Suriaya Hassan ◽  
Abdul Ansari ◽  
Arvind Kumar ◽  
Munna Ram ◽  
Sulaxna Sharma ◽  
...  

In current investigation, the Ni-P-W/ZrO2 electroless nanocomposite coatings are deposited upon mild steel substrate (AISI 1040 grade). The W/ZrO2 nanoparticles (50 to 130 nm range) were incorporated separately into acidic electroless Ni-P matrix as a second phase materials. The as-plated EL Ni-P-W/ZrO2 depositions were also heated at 400 οC in Argon atmosphere for one hour duration and analyzed by SEM/EDAX and XRD physical methods. The Ni-P-W/ZrO2 as-plated coupons revealed nebulous type structures while heated coupons showed crystalline structures in both cases. Furthermore Ni-P-ZrO2 coatings have very less cracks and gaps as compared to Ni-P-W coatings. The corrosion tests result in peracid (0.30 ± 0.02 % active oxygen) solutions point up that corrosivity of peracid ( 500 ppm Cl) is more than peracid (0 ppm Cl) and corrosion resistance of tested coupons varies as Ni-P-ZrO2 (as-plated) > Ni-P-ZrO2 (heated) > Ni-P-W (as-plated) > Ni-P-W (heated) > MS. The utilization of Ni-P-ZrO2 nanocomposite coatings in peracid solutions can be considered a cost effective option on the basis of its better cost/strength ratio in addition to its fair corrosion resistance.


2017 ◽  
pp. 1303-1326
Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Electroless nickel coatings are widely popular in various industrial sectors due to their excellent tribological properties. The present study considers optimization of coating parameters along with annealing temperature to improve microhardness and corrosion resistance of Ni-P-TiO2 composite coatings. Grey relational analysis is used to find out the optimal combination of coating parameters. From the analysis, it is confirmed that annealing temperature of the coating has the most significant effect and amount of titanium particles in the coating has some significant effect on corrosion properties of the coating. The same trend is observed in case of combined study of corrosion behavior and microhardness. The surface morphology, phase transformation and the chemical composition are examined using scanning electron microscopy, X-ray diffraction analysis and energy dispersive analysis respectively. The Ni-P-TiO2 composite coating revealed nodular structure with almost uniform distribution of titanium particles and it turns in to crystalline structure after heat treatment.


Sign in / Sign up

Export Citation Format

Share Document