A New Analytical Path-Reshaping Model and Solution Algorithm for Contour Error Pre-Compensation in Multi-Axis Computer Numerical Control Machining

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Mansen Chen ◽  
Yuwen Sun ◽  
Jinting Xu

Abstract Reduction of contour error is crucial for multi-axis computer numerical control (CNC) machining to produce products with required geometric and dimensional accuracy. Although various contour error pre-compensation methods have been developed, few studies are dedicated to five-axis machines when compared with three-axis ones. In this paper, a new contour error pre-compensation method that integrates analytical prediction of contour error, optimal path-reshaping model, and decoupling solution algorithm is proposed for five-axis machining. First, by analyzing the dynamic responses of servo drive to the typical step and ramp signals, linear expression of servo tracking error with respect to the sequence of discrete axis positions is yielded for the prediction of contour error ahead of servo loops. Then, using the Taylor-series expansion and the pseudo-inverse matrix of the Jacobian function, a least-square optimization-based path-reshaping model that implies the satisfaction condition of zero contour error is analytically built. Thus, the complicated nonlinear contour error pre-compensation problem is converted into a simple quadratic programming problem. Concerning the effects of tool orientation reshaping on tool-tip contouring accuracy, a simple yet effective synchronous compensation strategy is subsequently proposed, through which both tool tip and tool orientation contour errors are reduced to near-zero without any iteration. To address the neighbor-dependence of the contour error compensation in adjacent cutter locations, a progressive solution algorithm with linear computational complexity is also briefly presented. Both numerical simulations and laboratorial experiments are conducted to validate the effectiveness of the proposed method.

2011 ◽  
Vol 201-203 ◽  
pp. 85-88 ◽  
Author(s):  
Min Han ◽  
Shan Li ◽  
Lu Tao Deng

The article introduces three design techniques of variable pitch & groove depth & groove width screw. We found parameterized mathematical model of the type of heterotypic screw by analyzing and computing. Then it can realize to CNC machining of variable pitch & groove depth & groove width screw on lathe.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1115-1130
Author(s):  
Aleksandar Rakic ◽  
Sasa Zivanovic ◽  
Zoran Dimic ◽  
Mladen Knezevic

This paper presents an application of an open architecture control system implemented on a multi-axis wood computer numerical control milling machining center, as a digital twin control. The development of the digital twin control system was motivated by research and educational requirements, especially in the field of configuring a new control system by “virtual commissioning”, enabling the validation of the developed controls, program verification, and analysis of the machining process and monitoring. The considered wood computer numerical control (CNC) machining system is supported by an equivalent virtual machine in a computer-aided design and computer-aided manufacturing (CAD/CAM) environment, as well as in the control system, as a digital twin. The configured virtual machines are used for the verification of the machining program and programming system via machining simulation, which is extremely important in multi-axis machining. Several test wood workpieces were machined to validate the effectiveness of the developed control system based on LinuxCNC.


2019 ◽  
Vol 11 (2) ◽  
pp. 315 ◽  
Author(s):  
Lucian-Ionel Cioca ◽  
Radu-Eugen Breaz ◽  
Sever-Gabriel Racz

Nowadays, companies are in the process of renewing their manufacturing lines by equipping them with modern five-axis CNC (computer numerical control) machining centers. The decision to select between different five-axis CNC machining centers, with similar technological capabilities is a difficult process, so the main goal of this work was to develop a method for assisting it. The proposed approach relies on seven technical criteria, four quantitative ones (traverse speed, thrust, spindle power, and spindle speed) which can be expressed by crisp numerical values, while the other three (flexibility, operation easiness, and setup time) are qualitative ones. The analytic hierarchy process (AHP) was used for ordering four variants of five-axis CNC milling machining centers. The qualitative criteria were processed using fuzzy systems to be expressed by crisp numerical values, suitable for AHP. Finally, the four variants of five-axis CNC milling machining centers were hierarchized and the best one was chosen. A sensitivity analysis was also unfolded to certify the robustness of the AHP.


Author(s):  
Qingzhao Li ◽  
Soichi Ibaraki ◽  
Wei Wang

Abstract The five-axis machining of a free-form surface often contains the reversal of a rotary axis' rotation direction with linear axis synchronized with it. This paper proposes a machining test to quantitatively evaluate the influence of the reversal of rotation direction on the surface geometry. In the five-axis machining, the trajectory of tool position and orientation is firstly given in the workpiece coordinate system by the CAM (Computer-aided Manufacturing) software, and the CNC (Computerized Numerical Control) system converts it to the machine coordinate system to calculate command trajectories. This paper clarifies that the tool path smoothing in the machine coordinate system can potentially cause a large contour error because of the dynamic synchronization error of rotary and linear axes. Although some academic works in the literature presented the smoothing in the workpiece coordinate system, many commercial CNC systems still employ the smoothing in the machine coordinate system, partly because machine tool users or makers do not clearly see how significant this influence can be on the machining accuracy. The proposed machining test enables a user to quantitatively evaluate it. The machining experiment shows that the geometric error of the finished test piece was as large as 0.16 mm under the conventional smoothing in a commercial CNC system, which can be significantly larger than the influence of other typical geometric errors of a five-axis machine tool. This paper shows, by numerical simulation, that the smoothing in the workpiece coordinate system can completely eliminate this contour error.


Author(s):  
Joseph B. Mueller

Abstract Flexible Computer Integrated Manufacturing (FCIM) technology existing today in industry, combined with modern repair processes, can be used to address erosion and corrosion inherent in submarine and surface ship fluid systems. Commander Submarine Force Atlantic Fleet (COMSUBLANT) will implement in the near future a Pump and Valve Repair System in the Trident Refit Facility (TRF), Submarine Base, Kings Bay, Georgia. The system will support the repair of submarine and surface ship components such as valve bodies, valve tailpieces, and pump casings. It will replace metal lost by erosion and corrosion using repair processes such as automated welding and epoxy spray and reliably return these components to original specification with computer numerical control (CNC) machining.


Sign in / Sign up

Export Citation Format

Share Document