scholarly journals Reducing the Risks during the Purchase of Five-Axis CNC Machining Centers Using AHP Method and Fuzzy Systems

2019 ◽  
Vol 11 (2) ◽  
pp. 315 ◽  
Author(s):  
Lucian-Ionel Cioca ◽  
Radu-Eugen Breaz ◽  
Sever-Gabriel Racz

Nowadays, companies are in the process of renewing their manufacturing lines by equipping them with modern five-axis CNC (computer numerical control) machining centers. The decision to select between different five-axis CNC machining centers, with similar technological capabilities is a difficult process, so the main goal of this work was to develop a method for assisting it. The proposed approach relies on seven technical criteria, four quantitative ones (traverse speed, thrust, spindle power, and spindle speed) which can be expressed by crisp numerical values, while the other three (flexibility, operation easiness, and setup time) are qualitative ones. The analytic hierarchy process (AHP) was used for ordering four variants of five-axis CNC milling machining centers. The qualitative criteria were processed using fuzzy systems to be expressed by crisp numerical values, suitable for AHP. Finally, the four variants of five-axis CNC milling machining centers were hierarchized and the best one was chosen. A sensitivity analysis was also unfolded to certify the robustness of the AHP.

2018 ◽  
Vol 939 ◽  
pp. 63-72
Author(s):  
Xi Ning Jiang ◽  
Yue Hai Sun ◽  
Xiao Hu Xie

A new type of machining method called half-spread-out helix modified roll is used to carry out numerical control machining and simulation of spiral bevel gears in this paper. The transformation from traditional machine tool adjustment parameters into processing input parameters of five-axis CNC machining center was realized. The simulated gear model of this machining method is obtained, and the coordinates of its tooth surface points are compared with points coordinates of theoretical tooth surface which are generated according to the traditional machining method. From the comparison, the correctness of this numerical control machining model is verified.


2010 ◽  
Vol 455 ◽  
pp. 594-598 ◽  
Author(s):  
Ying Liang Yu ◽  
Zai Dan Geng

One of the significant features of CNC technological superiority is in the practical applications, according to the necessary movement of processed parts required, we can use generating method to transform CNC machine tools and receive the desired results. This article discussed under the premise that lack of special equipment, transforming ordinary horizontal CNC milling to machine worm gear. The advantage of this numerical transformation approach is using the processing functions of thread and tapered thread instruction, skillfully translating into control of the CNC machining worm, expanding the CNC machining capabilities and the scope of practical application. Also apply the advantages of CNC technology, reduce or eliminate the accumulation of worm in the processing of pitch error which makes the worm processing precision and smoothness of worm drive better. This paper discussed the principles of numerical control transformation, transformation of milling machine structure and the conversion calculation of parameters in programming, analyzed the causes and processing effects of worm gear processing errors control and accuracy improving.


Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
SS Pande

This paper reports a novel method to generate adaptive spiral tool path for the CNC machining of complex sculptured surface represented in the form of cloud of points without the need for surface fitting. The algorithm initially uses uniform 2 D circular mesh-grid to compute the cutter location (CL) points by applying the tool inverse offset method (IOM). These CL points are refined adaptively till the surface form errors converge below the prescribed tolerance limits in both circumferential and radial directions. They are further refined to eliminate the redundancy in machining and generate optimum region wise tool path to minimize the tool lifts. The NC part programs generated by our algorithm were widely tested for different case studies using the commercial CNC simulator as well as by the actual machining trial. Finally, a comparative study was done between our developed system and the commercial CAM software. The results showed that our system is more efficient and robust in terms of the obtained surface quality, productivity, and memory requirement.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


2013 ◽  
Vol 579-580 ◽  
pp. 276-282 ◽  
Author(s):  
Zhi Yan Ma ◽  
Guang You Yang ◽  
Xu Wu Su

Based on Virtual Numerical Control machining system (VNC), a new method of Augmented Numerical Control machining system (ANC) which aims at the realization of NC machining process simulation in real machining environment is put forward. The System inputs continuous video images of real NC processing environment through camera to identify and locate the major machining and positioning parts of real machine in the image stream. And the virtual parts of VNC will be matched to the corresponding real ones of real machining system to achieve the registration of ANC. The NC system drives the virtual machining models for processing through a real machine. On the other hand, the actual running information of CNC machine are imported into the ANC system to drive some models of process variables such as cutting force, material removal rate, chip shape, tool temperature, cutting tool wear. ANC provides the platform to integrate the geometry and physical simulation based on actual information from real CNC machining environment.


2020 ◽  
Vol 6 (2) ◽  
pp. 029-033
Author(s):  
Herick Henci Agrisa

This paper discusses the pre and process of running a computer numerical control machine (CNC) using computer-aided design (CAD) software commonly used to design products to be produced and computer-aided manufacture (CAM) software used to control machines during the manufacturing process. Some types of CNC machines in general, namely CNC lathe machine and CNC milling machine. The history of the development of the CNC Machine was begun in 1952 by John Pearseon of the Massachusetts Institute of Technology on behalf of the United States Air Force, which aims to make complicated special workpieces. In addition, this paper also discusses the basic numerical code types used in CNC machines.


Safety ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Sever-Gabriel Racz ◽  
Radu-Eugen Breaz ◽  
Lucian-Ionel Cioca

Computer numerical control (CNC) machine tools are complex production systems with fully automatic machine parts. Nowadays, high feed rates and machining speeds are used during the machining process. Human operators are still needed to set-up the machine, load/unload workpieces and parts, load the machining code, and supervise the machining process. The operators work in an environment where automated high-speed motions occur, and consequently, CNC machine tools have to be equipped with safety systems. The approach presented in this paper was to evaluate the main safety systems of CNC machine tools based upon the analytic hierarchy process (AHP). The analyzed systems were divided into six main categories and compared pairwise using five criteria proposed by the authors. The approach and the obtained results significantly relied upon the situation found at the industrial company used as a benchmark for the research. The analysis reveals that, among considered safety devices, manually operated controls are the most efficient ones. Finally, a sensitivity analysis was conducted to test the stability of the AHP solution.


2014 ◽  
Vol 701-702 ◽  
pp. 223-226
Author(s):  
Shuang Wu

This paper is study on the two-dimensional simulation of the machining process, and three-dimensional simulation. Analog three-axis CNC milling machining entity, it will be processed rough triangular facets discrete and discrete vector geometry and tool scans the body to do intersection algorithm to simulate the tool cutting process by continually updating the blank data to achieve material simulation removal process.


Author(s):  
Guangyu Hou ◽  
Matthew C. Frank

This paper introduces a new method that uses slice geometry to compute the global visibility map (GVM). Global visibility mapping is a fundamentally important process that extracts geometric information about an object, which can be used to solve hard problems, for example, setup and process planning in computer numerical control (CNC) machining. In this work, we present a method for creating the GVM from slice data of polyhedron models, and then show how it can help determine around which axis of rotation a part can be machined. There have been various methods of calculating the GVM to date, tracing back to the well-known seminal methods that use Gaussian mapping. Compared to the considerable amount of work in this field, the proposed method has an advantage of starting from feature-free models like stereolithography (STL) files and has adjustable resolution. Moreover, since it is built upon slicing the model, the method is embarrassingly parallelizable in nature, thus suitable for high-performance computing. Using the GVM obtained by this method, we generate an axis of rotation map to facilitate the setup planning for four-axis CNC milling machines as one implementation example.


Sign in / Sign up

Export Citation Format

Share Document