A tool path error estimate in computer numerical control for five-axis machining

Author(s):  
Hongliang Wang ◽  
Ruifeng Guo ◽  
Han Zhang ◽  
YiWen Zhang ◽  
Ruirui Chen
2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Dapeng Fu ◽  
Xinyu Lv ◽  
Shuangyang Jiang

Abstract: With the continuous development and advancement of science and technology, the work of tool path planning has received extensive attention. Among them, curved surface generation and data processing are the focus of management and design, which necessitate the full application of reverse design of complex curved surface components to complete numerical control processing, effective optimization and upgrading, integration the tasks of point cloud data collection and point cloud data processing to ensure that the corresponding computer numerical control machining model can exert its actual value. This paper briefly analyzes the basic principles of curved surface reconstruction as well as discusses the reverse design of complex curved components and the experimental processes and results that involved computer numerical control machining, which serves the purpose as reference only.


2013 ◽  
Vol 716 ◽  
pp. 614-619
Author(s):  
Chen Hua She ◽  
Zhi Hao Zheng

Manufacturing industries such as the aerospace industry and the molding industry need to process products of complex and high-precision curved surface. Multi-axis machine tool with two rotational axes plays an indispensable role in processing such products. However, in a fiercely competitive market, each manufacturer is devoted to reduce processing time and costs. Therefore, how to efficiently create multi-axis numerical control program has become an important issue. Typical multi-axis machining parts often have specific machining features such as hole, groove or even engraved text on the inclined plane. Although the tool path can be generated by the advanced multi-axis CAD/CAM system, the prices of such systems are very high. This study proposed a methodology for defining the inclined working plane of the multi-axis machining tool. According to the defined working coordinate system proposed in this study, the tool path files of the traditional three-axis machine tool can be transformed to the five-axis NC program through post-processing calculation. As a result, the required NC program can be obtained for the same machining feature on any inclined plane in shorter time. Finally, this study tested and confirmed the accuracy of the numerical control program by solid cutting simulation software.


Author(s):  
Jinting Xu ◽  
Longkun Xu ◽  
Yuwen Sun ◽  
Yuan-Shin Lee ◽  
Jibin Zhao

Smooth continuous spiral tool paths are preferable for computer numerical control (CNC) machining due to their good kinematic and dynamic characteristics. This paper presents a new method to generate spiral tool paths for the direct three-axis CNC machining of the measured cloud of point. In the proposed method, inspired by the Archimedean spiral passing through the radial lines in a circle, 3D radial curves on the cloud of point are introduced, and how to construct the radial curves on the complex cloud of point is discussed in detail and then a practical and effective radial curve construction method of integrating boundary extraction, region triangulation, mesh mapping, and point projection is proposed. On the basis of the radial curves, the spiral tool path can be generated nicely by interpolating the radial curves using a spiral curve. Besides, the method of identifying and eliminating the overcuts and undercuts in the spiral tool path resulting from the interpolation error is also presented for good surface quality. Finally, several examples are given to validate the proposed method and to show its potential in practical applications when quality parametric models and mesh models are not available.


Author(s):  
Yi-Pei Shih ◽  
Shi-Duang Chen

To reduce form grinding errors, this paper proposes a free-form flank topographic correction method based on a five-axis computer numerical control (CNC) gear profile grinding machine. This correction method is applied not only to the five-axis machine settings (during grinding) but also to the wheel profile (during wheel truing). To achieve free-form modification of the wheel profile, the wheel is formulated as B-spline curves using a curve fitting technique and then normal correction functions made up of four-degree polynomials are added into its working curves. Additionally, each axis of the grinding machine is formulated as a six-degree polynomial. Based on a sensitivity analysis of the polynomial coefficients (normal correction functions and CNC machine settings) on the ground tooth flank and the topographic flank errors, the corrections are solved using the least squares method. The ground tooth flank errors can then be efficiently reduced by slightly adjusting the wheel profile and five-axis movement according to the solved corrections. The validity of this flank correction method for helical gears is numerically demonstrated using the five-axis CNC gear profile grinding machine.


2005 ◽  
Vol 127 (1) ◽  
pp. 60-67 ◽  
Author(s):  
O. Remus Tutunea-Fatan ◽  
Hsi-Yung Feng

Five-axis computer numerical control (CNC) machining is characterized with a multitude of errors. Among them an important component comes from the computer-aided manufacturing software known as the geometry-based errors. A new and accurate method to determine these errors is presented in this paper as opposed to the conventional chordal deviation method. The present method allows establishing the exact linearly interpolated tool positions between two cutter contact points on a given tool path, based on the inverse kinematics analysis of the machine tool. A generic procedure has been developed to ensure wide applicability of the proposed method. Analytical derivation of the geometry-based errors provides insights regarding the origin of these errors and their affecting parameters. Due to the highly non-linear characteristics of the problem, analytical solutions can only be obtained for simple surface geometry. Numerical computation is able to determine the errors for general surface shapes but it would be difficult to uncover further insightful information from the calculated error values. Besides the local surface geometry, the configuration of the kinematic chain of the CNC machine has been found to be the primary factor controlling the resulting value and type of the geometry-based errors. Implementations with a typical complex free-form surface demonstrated that the conventional chordal deviation method was not reliable and could significantly underestimate the geometry-based errors.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Mansen Chen ◽  
Yuwen Sun ◽  
Jinting Xu

Abstract Reduction of contour error is crucial for multi-axis computer numerical control (CNC) machining to produce products with required geometric and dimensional accuracy. Although various contour error pre-compensation methods have been developed, few studies are dedicated to five-axis machines when compared with three-axis ones. In this paper, a new contour error pre-compensation method that integrates analytical prediction of contour error, optimal path-reshaping model, and decoupling solution algorithm is proposed for five-axis machining. First, by analyzing the dynamic responses of servo drive to the typical step and ramp signals, linear expression of servo tracking error with respect to the sequence of discrete axis positions is yielded for the prediction of contour error ahead of servo loops. Then, using the Taylor-series expansion and the pseudo-inverse matrix of the Jacobian function, a least-square optimization-based path-reshaping model that implies the satisfaction condition of zero contour error is analytically built. Thus, the complicated nonlinear contour error pre-compensation problem is converted into a simple quadratic programming problem. Concerning the effects of tool orientation reshaping on tool-tip contouring accuracy, a simple yet effective synchronous compensation strategy is subsequently proposed, through which both tool tip and tool orientation contour errors are reduced to near-zero without any iteration. To address the neighbor-dependence of the contour error compensation in adjacent cutter locations, a progressive solution algorithm with linear computational complexity is also briefly presented. Both numerical simulations and laboratorial experiments are conducted to validate the effectiveness of the proposed method.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Jianhui Li ◽  
Z. Murat Kilic ◽  
Yusuf Altintas

Abstract Five-axis ball-end milling is used extensively to machine parts with sculptured surfaces. This paper presents the general cutting dynamics model of the ball-end milling process for machine tools with different five-axis configurations. The structural dynamics of both the tool and workpiece are considered for the prediction of chatter stability at each tool location along the tool path. The effects of tool–workpiece engagement and tool axis orientation are included in the model. By sweeping the spindle speeds, the chatter-free spindle speeds are selected followed by the prediction of forced vibrations in five-axis milling of thin-walled, flexible parts. The proposed model has been experimentally illustrated to predict the chatter stability and forced vibrations on a table-tilting five-axis computer numerical control machine tool.


Sign in / Sign up

Export Citation Format

Share Document