A New Vacuum System for Steam Plant Condenser

Author(s):  
Abraham Engeda ◽  
Ahmed Hegazy ◽  
Khaled Yousef

Abstract In the current work, a simple and low energy consuming system is proposed for holding on the vacuum in the steam power plant system. The vacuum is created at the tip of an inverted U-pipe through which water flows by siphon effect due to the height difference in water surfaces of two tanks. This height difference and the elevation of the inverted U-pipe tip define the value of the vacuum to be grown. The U-pipe tip is connected to the discharge pipe of a compressor which draws a mixture of air, and water vapor from the steam condenser and raises their pressure a little higher than that of the inverted U-pipe tip. The mixture flows with the water down the inverted U-pipe till they depart the U-tube. A thermodynamic and fluid flow analysis is developed for predicting the performance of the proposed system. The results of this analysis show that the right selection of the mass flowrate ratio of water flowing in the inverted U-pipe to air and water vapor mixture sucked by the compressor from the steam plant condenser, in the range of 25,000, the height of the inverted U-pipe summit from the water level of the higher water tank greater than 9.2 m and the height difference of the water levels in the two water tanks small enough, in the range of 0.1 m saves the power of vacuum system by 80% less than that consumed when using compressor alone for venting the steam plant condenser.

Author(s):  
Ahmed Hegazy ◽  
Khaled Yousef ◽  
Abraham Engeda

Abstract In the current work, a simple and low energy consuming system is proposed for holding on the vacuum in the steam power plant system. In this system, vacuum is created at the tip of an inverted U-pipe through which water flows by siphon effect. The stream of water through this pipe is brought about from a reservoir to another one whose water surfaces are at certain height difference. This height difference along with the height of the inverted U-pipe tip defines the value of the vacuum that can be produced. At this tip, the U-pipe is linked to the discharge pipe of a compressor which draws a mixture of air, non-condensable gases and some water vapor from the steam condenser and raises their pressure a little higher than that of the inverted U-pipe tip so that the resistance of connecting pipe is overcome and the pressure at exit of this pipe is equal to that at the inverted U-pipe tip. The mixture flows along with the water down the inverted U-pipe till it leaves the pipe with the water. A thermodynamic and fluid flow analysis is developed for predicting the performance of the proposed system. The results of this analysis show that the right selection of the mass flow rates ratio of water flowing in the inverted U-pipe and air and water vapor mixture sucked by the compressor from the steam plant condenser, in the range of 25000, the height of the inverted U-pipe summit from the water level of the higher water tank greater than 9.2 m and the height difference of the water levels in the two water tanks small enough, in the range of 0.1m saves the power of vacuum system by 80% less than that consumed when using compressor alone for venting the steam plant condenser.


2021 ◽  
Vol 1 (4) ◽  
pp. 120-126
Author(s):  
Edi Kurniawan ◽  
Heri Sularno ◽  
I'ie Suwondo ◽  
Anak Agung Istri S.W

Fresh water generator is one of the most important auxiliary aircraft on ships to produce fresh water. The efficient use of fresh water can extend the life of the fresh water generator and save electricity usage. Efficient use of fresh water can be done by remotely monitoring the level of fresh water in the tank in real time.The system for knowing the water level in real time is built with an ultrasonic sensor to transmit data to the Wemos in the form of height data. Wemos converts freshwater level data into the volume of water in the tank. The volume and water level data is then displayed on the LCD and the Wemos sends data on the volume of fresh water to the internet in the form of a website with a design that is easy to understand (user friendly) and the website can be accessed anywhere. It can be seen that the system can work properly because the highest error reading is only 5%, namely in 4 liters with a tilt position og 20 right . Meanwhile, the biggest difference between sendor readings and real when testing 5 liters with a slope of 30 to the right is 0.23 liters. The best average result occur when testing flat conutions.


2005 ◽  
Vol 22 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Alexander Donchev ◽  
Harald Fietzek ◽  
Vladislav Kolarik ◽  
Daniel Renusch ◽  
Michael Schütze

Author(s):  
Alexander Führing ◽  
Subha Kumpaty ◽  
Chris Stack

In external and internal fluid flow analysis using numerical methods, most attention is paid to the properties of the flow assuming absolute rigidity of the solid bodies involved. However, this is often not the case for water flow or other fluids with high density. The pressure forces cause the geometry to deform which in turn changes the flow properties around it. Thus, a one-way and two-way Fluid-Structure Interaction (FSI) coupling is proposed and compared to a CFD analysis of a windsurfing fin in order to quantify the differences in performance data as well as the properties of the flow. This leads to information about the necessity of the use of FSI in comparison to regular CFD analysis and gives indication of the value of the enhanced results of the deformable analysis applied to water flow around an elastically deformable hydrofoil under different angles of attack. The performance data and flow property evaluation is done in ANSYS Fluent using the k-ω SST and k-ε model with a y+ of 1 and 35 respectively in order to be able to compare the behavior of both turbulence models. It is found that the overall lift coefficient in general is lower and that the flow is less turbulent because of softer transition due to the deformed geometry reducing drag forces. It is also found that the deformation of the tip of the hydrofoil leads to vertical lift forces. For the FSI analysis, one-way and two-way coupling were incorporated leading to the ability to compare results. It has been found that one-way coupling is sufficient as long as there is no stall present at any time.


2021 ◽  
Vol 15 (1) ◽  
pp. 1034-1056
Author(s):  
Alireza Aghaei ◽  
Suvanjan Bhattacharyya ◽  
Amin Dezfulizadeh ◽  
A.S. Goldanlou ◽  
S. Rostami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document