Parameter Identification of a Strongly Nonlinear Rotor-Bearing System Based on Reconstructed Constant Response Tests

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Genbei Zhang ◽  
Chaoping Zang ◽  
Michael I. Friswell

Abstract A strongly nonlinear rotor-bearing system often has multiple solutions under harmonic excitations and jump phenomena. For example, a hardening nonlinearity may include a jump-down in the acceleration process and jump-up in the deceleration process. It is challenging to measure all of these multiple responses and establish an accurate dynamic model from experimental data to predict these phenomena. This paper used a fixed frequency test method to measure all of these multiple responses under harmonic excitations and developed a novel strategy to characterize and identify nonlinearities in a strongly nonlinear rotor-bearing system based on reconstructing constant response tests from fixed frequency test data. The fixed frequency tests are achieved by monotonically increasing the voltage applied to the exciter at a fixed frequency and using the force drop-out phenomenon through the resonance to control the force applied to the structure. This test method could measure multivalued response curves of a strongly nonlinear rotor-bearing system in a nonrotating state. The constant response tests could be reconstructed from these multivalued response curves. The relationship of equivalent stiffness versus displacement can be established, and hence, the nonlinear stiffness is characterized and identified from constant response tests. A rotor-bearing system with a strongly nonlinear support is used to demonstrate the method, and the nonlinear support stiffness parameters are identified and validated in a nonrotating state. The identified nonlinear rotor-bearing model also could predict the jump phenomena in the acceleration or deceleration process. The results demonstrate the feasibility and effectiveness of the approach, and also show the potential for practical applications in engineering.

Author(s):  
John M. Vance ◽  
Daniel Ying

Selection criteria and design evaluations of several types of bearing dampers with active control for application to aircraft engines were described in a companion paper (Vance, Ying, and Nikolajsen, 1999). A disk type electrorheological (ER) damper was chosen for further study and testing. The results of the tests and the final conclusions of the study are described in this paper. Experimental results including stiffness and damping coefficients are presented for the ER bearing damper with two types of ER fluid, 350 CS and 10 CS (centistokes) viscosity. The vibration attenuation performance of the ER damper was measured on a rotordynamic test rig in the form of free vibration decay, rotor orbits, and runup unbalance responses. The results show that the ER fluid with lower viscosity has the better characteristics for rotordynamic applications. It was found that ER fluids produce both Coulomb and viscous damping. If only the damping is considered, the Coulomb type is less desirable, but with active control it can also achieve control of rotor stiffness as analyzed in Vance and San Andres (1999). A feedback control system was developed and applied to the ER damper with the objective of improving the overall rotordynamic performance of the rotor bearing system, considering both vibration amplitudes and dynamic bearing forces. A “bang-bang” (on and off) simple control logic was found to work better in practice than more sophisticated schemes. The measured runup responses of the rotor-bearing system with this control approximated the desired vibration response curves fairly well. The tests highlighted some of the practical considerations that would be important for aircraft engine applications, such as the ER fluid limitations, the electrical power supply requirements, the electrical insulation requirements, the nonlinear relationship between the voltage and the damping, and the relative benefits of active control. It is concluded that active control of bearing damping is probably not a practical improvement over the passive squeeze film dampers currently used in most aircraft gas turbine engines.


2000 ◽  
Vol 122 (2) ◽  
pp. 337-344 ◽  
Author(s):  
John M. Vance ◽  
Daniel Ying

Selection criteria and design evaluations of several types of bearing dampers with active control for application to aircraft engines were described in a companion paper. A disk type electrorheological (ER) damper was chosen for further study and testing. The results of the tests and the final conclusions of the study are described in this paper. Experimental results including stiffness and damping coefficients are presented for the ER bearing damper with two types of ER fluid, 350 CS and 10 CS (centistokes) viscosity. The vibration attenuation performance of the ER damper was measured on a rotordynamic test rig in the form of free vibration decay, rotor orbits, and runup unbalance responses. The results show that the ER fluid with lower viscosity has the better characteristics for rotordynamic applications. It was found that ER fluids produce both Coulomb and viscous damping. If only the damping is considered, the Coulomb type is less desirable, but with active control it can also achieve control of rotor stiffness. A feedback control system was developed and applied to the ER damper with the objective of improving the overall rotordynamic performance of the rotor bearing system, considering both vibration amplitudes and dynamic bearing forces. A “bang–bang” (on and off) simple control logic was found to work better in practice than more sophisticated schemes. The measured runup response of the rotor-bearing system with this control approximated the desired vibration response curves fairly well. The tests highlighted some of the practical considerations that would be important for aircraft engine applications, such as the ER fluid limitations, the electrical power supply requirements, the electrical insulation requirements, the nonlinear relationship between the voltage and the damping, and the relative benefits of active control. It is concluded that active control of bearing damping is probably not a practical improvement over the passive squeeze film dampers currently used in most aircraft gas turbine engines. [S0742-4795(00)01202-3]


2021 ◽  
pp. 095745652110307
Author(s):  
Hara P Mishra ◽  
Arun Jalan

This article presents the experimental and statistical methodology for localized fault analysis in the rotor-bearing system. These defects on outer race, on inner race, and on a combination of ball and outer race are considered. In this study speed, load and defects were considered as the essential process variables to understand their significance and effects on vibration response for the rotor-bearing system. Three factors at three levels were considered for experimentation, and the experiment was designed for L27 based on design of experiments (DOE) methodology. From the experiments, the vibration response results are recorded in terms of root mean square value for the analysis. Response surface methodology (RSM) is used for identifying the interaction effect of varying process parameters upon the response of vibrations by response surface plot. The rotor-bearing test setup is used for experimentation and is analyzed by using DOE. This study establishes the prediction of fault in the rotor-bearing system in combined parametric effect analysis and its influence with DOE and RSM.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arnab Bose ◽  
Prabhakar Sathujoda ◽  
Giacomo Canale

Abstract The present work aims to analyze the natural and whirl frequencies of a slant-cracked functionally graded rotor-bearing system using finite element analysis for the flexural vibrations. The functionally graded shaft is modelled using two nodded beam elements formulated using the Timoshenko beam theory. The flexibility matrix of a slant-cracked functionally graded shaft element has been derived using fracture mechanics concepts, which is further used to develop the stiffness matrix of a cracked element. Material properties are temperature and position-dependent and graded in a radial direction following power-law gradation. A Python code has been developed to carry out the complete finite element analysis to determine the Eigenvalues and Eigenvectors of a slant-cracked rotor subjected to different thermal gradients. The analysis investigates and further reveals significant effect of the power-law index and thermal gradients on the local flexibility coefficients of slant-cracked element and whirl natural frequencies of the cracked functionally graded rotor system.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


2007 ◽  
Vol 21 (6) ◽  
pp. 860-864 ◽  
Author(s):  
Yue-Gang Luo ◽  
Zhao-Hui Ren ◽  
Hui Ma ◽  
Tao Yu ◽  
Bang-chun Wen

2017 ◽  
Vol 121 ◽  
pp. 27-38 ◽  
Author(s):  
Yajing Li ◽  
Feng Liang ◽  
Yu Zhou ◽  
Shuiting Ding ◽  
Farong Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document