Establishment of a contact stiffness matrix and its effect on the dynamic behavior of rod-fastening rotor bearing system

Author(s):  
Xianglin Wu ◽  
Yinghou Jiao ◽  
Zhaobo Chen ◽  
Wensheng Ma
Author(s):  
Mingjian Lu ◽  
Haipeng Geng ◽  
Guohui Xu ◽  
Lie Yu ◽  
Weimin Wang

This paper investigates the dynamic characteristics of a composite rotor fastened by rods. Contact stiffness and equivalent bending stiffness between discs with different rod preloads of the rotor are obtained respectively by using the elastic and elastic-plastic contact theory. The finite element model of rotor-bearing system is built with Timoshenko beam elements. Critical speeds are respectively calculated with and without the consideration of contact effect, including the changing bearing dynamic coefficients. A test rig of rod fastening rotor-bearing system has been constructed to verify the numerical model results. The results show that the critical speed increases with rod preload and it keeps almost constant when the rod preload reaches a certain value, called preload saturation. The experiments demonstrate that the rod fastening rotor under preload saturation has the similar dynamic characteristics as integral rotor, such as the critical speed and backward whirl with asymmetric support stiffnesses. This kind of rotors which are under preload saturation can be analyzed and designed as an integral one without considering the contact effect. The study gives referential recommendations for analysis and design of a class of composite rotors which contain discs and rods.


2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


Author(s):  
Shuai Yan ◽  
Bin Lin ◽  
Jixiong Fei ◽  
Pengfei Liu

Nonlinear damping suspension has gained attention owing to its excellent vibration isolation performance. In this paper, a cubic nonlinear viscous damping suspension was introduced to a rotor bearing system for vibration isolation between the bearing and environment. The nonlinear dynamic response of the rotor bearing system was investigated thoroughly. First, the nonlinear oil film force was solved based short bearing approximation and half Sommerfeld boundary condition. Then the motion equations of the system was built considering the cubic nonlinear viscous damping. A computational method was used to solve the equations of motion, and the bifurcation diagrams were used to display the motions. The influences of rotor-bearing system parameters were discussed from the results of numerical calculation, including the eccentricity, mass, stiffness, damping and lubricating oil viscosity. The results showed that: (1) medium eccentricity shows a wider stable speed range; (2) rotor damping has little effect to the stability of the system; (3) lower mass ratio produces a stable response; (4) medium suspension/journal stiffness ratio contributes to a wider stable speed range; (5) a higher viscosity shows a wider stable speed range than lower viscosity. From the above results, the rotor bearing system shows complex nonlinear dynamic behavior with nonlinear viscous damping. These results will be helpful to carrying out the optimal design of the rotor bearing system.


2019 ◽  
Vol 90 (5) ◽  
pp. 917-943 ◽  
Author(s):  
Longkai Wang ◽  
Ailun Wang ◽  
Miao Jin ◽  
Qike Huang ◽  
Yijun Yin

Author(s):  
Ting Nung Shiau ◽  
Jon Li Hwang

An efficient design algorithm for optimum weight design of a rotor bearing system with dynamic behavior constraints is investigated. The constraints include the restrictions on stresses, unbalance response, and/or critical speeds. The system dynamic behaviors are analyzed by the finite element method. And the exterior penalty function method is used as the optimization technique to minimize the system weight. The system design variables are the cross-sectional areas of the shaft and the stiffnesses of the bearings. The sensitivity analysis of the system parameters is also investigated. The example of a single spool rotor bearing system is employeed to demonstrate the merits of the design algorithm with different combination of dynamic behavior constraints. At the optimum stage, it is shown that the weight of rotor system can be significantly reduced. Moreover, the optimum design weights are quite difference for various combinations of dynamic behavior constraints.


Author(s):  
Bingxi Zhao ◽  
Qi Yuan ◽  
Pu Li

Abstract Rod fastening rotor (RFR), as a typical rotor structure of gas turbine which is different from the integral rotor, is comprised of a set of discs clamped together by a central tie rod or several tie rods on the pitch circle diameters. In process of machining, tolerances of the disc are inevitable, of which the parallelism error and mass imbalance are focused on in this paper. Firstly, the complex bending of RFR by accumulation of parallelism errors of discs is derived through the coordinate transmission. Then the static analysis of RFR is performed to obtain the additional pressure by the effect of unbalanced forces, which is related to the assembly angles and rotating speed, on contact surfaces using a linear hypothesis, based on which the distribution of contact pressure considering the original pre-tightening force is obtained. Then the Bifractal-Regular theory is adopted to acquire the micro-topography of the contact interface and derive the contact stiffness related to normal contact pressure, fractal upper length limit and regular shape of the contact interfaces. After that, the zero thickness element is introduced to obtain the equivalent stiffness matrices of the contact surface. In addition, the circumferential uniformly distributed rods are modeled as a spring element which provides additional bending stiffness for the RFR. Based on the analysis above, the dynamic model of the RFR-bearing system containing 10 discs is established using the Timoshenko beam element where the continuous part of the shaft is modeled by Timoshenko beam element considering shear effect. Finally, the multi-optimization is carried out on the vibration response by the coupled effects of both initial bending and mass imbalance of the RFR-bearing system through which the optimal assembly angles are obtained. The results show a good performance in decreasing vibration as well as bending of the RFR system.


Sign in / Sign up

Export Citation Format

Share Document