Data-Driven Detection and Classification of Regimes in Chaotic Systems Via Hidden Markov Modeling

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Chandrachur Bhattacharya ◽  
Asok Ray

Abstract Chaotic dynamical systems are essentially nonlinear and are highly sensitive to variations in initial conditions and process parameters. Chaos may appear both in natural (e.g., heartbeat rhythms and weather fluctuations) and human-engineered (e.g., thermo-fluid, urban traffic, and stock market) systems. For prediction and control of such systems, it is often necessary to be able to distinguish between non-chaotic and chaotic behavior; several methods exist to detect the presence (or absence) of chaos, specially in noisy signals. A dynamical system may exhibit multiple chaotic regimes, and apparently, there exist no methods, reported in open literature, to classify these regimes individually. This paper demonstrates an application of standard hidden Markov modeling (HMM), which is a commonly used supervised method, as a technique to classify multiple regimes from a time series of dynamical systems, where classified regimes could be chaotic or non-chaotic. The proposed HMM-based method of regime classification has been tested using numerical data obtained from several well-known chaotic dynamical systems (e.g., Hénon, forced Duffing, Rössler, and Lorenz attractor). It is apparently well-suited to serve as a bench mark for the development of alternative data-driven methods to enhance the performance (e.g., accuracy and computational speed) of regime classification in chaotic dynamical systems.

Author(s):  
Pratima Saravanan ◽  
Jessica Menold

Objective This research focuses on studying the clinical decision-making strategies of expert and novice prosthetists for different case complexities. Background With an increasing global amputee population, there is an urgent need for improved amputee care. However, current prosthetic prescription standards are based on subjective expertise, making the process challenging for novices, specifically during complex patient cases. Hence, there is a need for studying the decision-making strategies of prosthetists. Method An interactive web-based survey was developed with two case studies of varying complexities. Navigation between survey pages and time spent were recorded for 28 participants including experts ( n = 20) and novices ( n = 8). Using these data, decision-making strategies, or patterns of decisions, during prosthetic prescription were derived using hidden Markov modeling. A qualitative analysis of participants’ rationale regarding decisions was used to add a deep contextualized understanding of decision-making strategies derived from the quantitative analysis. Results Unique decision-making strategies were observed across expert and novice participants. Experts tended to focus on the personal details, activity level, and state of the residual limb prior to prescription, and this strategy was independent of case complexity. Novices tended to change strategies dependent upon case complexity, fixating on certain factors when case complexity was high. Conclusion The decision-making strategies of experts stayed the same across the two cases, whereas the novices exhibited mixed strategies. Application By modeling the decision-making strategies of experts and novices, this study builds a foundation for development of an automated decision-support tool for prosthetic prescription, advancing novice training, and amputee care.


2001 ◽  
Vol 08 (02) ◽  
pp. 137-146 ◽  
Author(s):  
Janusz Szczepański ◽  
Zbigniew Kotulski

Pseudorandom number generators are used in many areas of contemporary technology such as modern communication systems and engineering applications. In recent years a new approach to secure transmission of information based on the application of the theory of chaotic dynamical systems has been developed. In this paper we present a method of generating pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way. To ensure good statistical properties of the CPRBG (which determine its quality) we assume that the dynamical systems used are also ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical situations, we suggest a physical model of CPRNG.


1991 ◽  
Vol 05 (14) ◽  
pp. 2323-2345 ◽  
Author(s):  
R.E. AMRITKAR ◽  
P.M. GADE

We discuss different methods of characterizing the loss of memory of initial conditions in chaotic dynamical systems.


Author(s):  
Qin Tao ◽  
Yajing Si ◽  
Fali Li ◽  
Peiyang Li ◽  
Yuqin Li ◽  
...  

Decision response and feedback in gambling are interrelated. Different decisions lead to different ranges of feedback, which in turn influences subsequent decisions. However, the mechanism underlying the continuous decision-feedback process is still left unveiled. To fulfill this gap, we applied the hidden Markov model (HMM) to the gambling electroencephalogram (EEG) data to characterize the dynamics of this process. Furthermore, we explored the differences between distinct decision responses (i.e. choose large or small bets) or distinct feedback (i.e. win or loss outcomes) in corresponding phases. We demonstrated that the processing stages in decision-feedback process including strategy adjustment and visual information processing can be characterized by distinct brain networks. Moreover, time-varying networks showed, after decision response, large bet recruited more resources from right frontal and right center cortices while small bet was more related to the activation of the left frontal lobe. Concerning feedback, networks of win feedback showed a strong right frontal and right center pattern, while an information flow originating from the left frontal lobe to the middle frontal lobe was observed in loss feedback. Taken together, these findings shed light on general principles of natural decision-feedback and may contribute to the design of biologically inspired, participant-independent decision-feedback systems.


Sign in / Sign up

Export Citation Format

Share Document