scholarly journals Investigation of Linear Higher Harmonic Control Algorithm for Rotorcraft Vibration Reduction

Author(s):  
Byeonguk Im ◽  
Changbae Lee ◽  
YoungJung Kee ◽  
Sangjoon Shin

Abstract A linear quadratic Gaussian controller for active vibratory loads reduction in helicopters is proposed based on a revisited higher harmonic control input by active trailing-edge flaps. Conventional individual blade control input is redefined using N-1/rev inter-blade phase lead, N/rev collective, and N+1/rev inter-blade phase lag signals where 1/rev frequency modulation originate from the multi-blade coordinate transform. A Mach-scaled flap blade is designed and analyzed by the multi-body dynamics analysis DYMORE. A linear time-invariant representation is identified from N/rev envelopes of the input and output responses obtained by DYMORE analysis. A MATLAB/Simulink closed-loop control simulation is designed using the identified state-space realization. The N/rev vibratory loads are reduced up to 52% with flap deflections and the linear control results match well with the nonlinear responses obtained from DYMORE. Furthermore, the multi-variable closed-loop stability estimated by the loop transfer functions using disk margin analysis reveals sufficient gain and phase margins.

2006 ◽  
Vol 29 (1) ◽  
pp. 179-189 ◽  
Author(s):  
Marco Lovera ◽  
Patrizio Colaneri ◽  
Carlos Malpica ◽  
Roberto Celi

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Mohammadreza Kamaldar ◽  
Jesse B. Hoagg

Abstract This paper presents two new time-domain feedback controllers that reject sinusoidal disturbances with known frequencies acting on an asymptotically stable linear time-invariant (LTI) system. The first controller is time-domain higher harmonic control (TD-HHC), which is effective for uncertain LTI systems. The second controller is time-domain adaptive higher harmonic control (TD-AHHC), which is effective for completely unknown LTI systems. TD-HHC requires an estimate of the control-to-performance transfer function evaluated at the disturbance frequencies. In contrast, TD-AHHC does not require any information regarding the LTI system. We analyze the stability and closed-loop performance of TD-HHC and TD-AHHC. For both TD-HHC and TD-AHHC, we show that the controller asymptotically rejects the disturbance. We present numerical simulations comparing TD-HHC and TD-AHHC with frequency-domain higher harmonic control (FD-HHC), which is an existing frequency-domain controller for rejection of sinusoidal disturbances. We also present results from acoustic disturbance rejection experiments, which demonstrate the practical effectiveness of both TD-HHC and TD-AHHC.


1992 ◽  
Vol 29 (3) ◽  
pp. 336-342 ◽  
Author(s):  
Khanh Nguyen ◽  
Inderjit Chopra

1994 ◽  
Vol 39 (4) ◽  
pp. 3-13
Author(s):  
Wolf R. Splettstoesser ◽  
Klaus‐J. Schultz ◽  
Roland Kube ◽  
Thomas F. Brooks ◽  
Earl R. Booth ◽  
...  

2003 ◽  
Vol 48 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Rendy P. Cheng ◽  
Colin R. Theodore ◽  
Roberto Celi

Sign in / Sign up

Export Citation Format

Share Document