Computational Analysis of Rotating Effects on Heat Transfer and Pressure Loss of Turbulent Flow in Detached Pin Fin Arrays With Various Clearances

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Ce Liang ◽  
Yu Rao

Abstract A detailed computational analysis is carried out on the heat transfer and pressure loss of a turbulent flow in detached pin fin arrays with various clearance values for the Reynolds number range of 20,000–80,000 and the rotation number range of 0–0.3. Clearances exist at the midheight of the detached pin fins, which account for 10%, 15%, and 20% of the full pin fin's height, respectively. The clearances release the fluid stagnation and reduce the bulk flow turbulent mixing level, which significantly reduces the pressure loss. Compared with the pin fin arrays, the pressure loss is decreased by up to 30.5% with the increase of the clearance value for the detached pin fin arrays. Also, the detached pin fin arrays show a maximum increase in the total Nusselt numbers by about 13.5%. Furthermore, the rotation effects can increase the friction factors as well as the Nusselt numbers simultaneously in both the pin fin arrays and the detached pin fin arrays. A higher rotation number can promote the heat transfer enhancement and uniformity in the detached pin fin channels.

2022 ◽  
pp. 1-28
Author(s):  
Ce Liang ◽  
Yu Rao ◽  
Jianian Chen ◽  
Peng Zhang

Abstract Experiments and numerical simulations under stationary and rotating conditions have been conducted to investigate turbulent flow and heat transfer characteristics of innovative guiding pin fin arrays in a wedge-shaped channel, which models the internal cooling passages for gas turbine blade trailing edge. The Reynolds number range is 10,000-80,000, and the inlet rotation number range is 0-0.46. With the increase of Reynolds numbers, the enhancement of heat transfer performance with guiding pin fin arrays is significantly higher than that with conventional circular pin fin arrays. At the highest Reynolds number of Re=80,000, the overall Nusselt number of the channel with guiding pin fin arrays is about 33.7% higher than that of the channel with circular pin fin arrays under the stationary condition, and is about 23.0% higher than the latter under the rotating conditions. At the highest inlet rotation number of Ro=0.46, the heat transfer difference between the trailing side and leading side of the channel is significantly lower with the guiding pin fin arrays. Both the experiments and numerical simulations indicate that the heat transfer uniformity and enhancement of the channel endwall is significantly improved by the guiding pin fin arrays under stationary and rotating conditions, which provide more reasonable flow distribution in the wedge-shaped channel, and can further produce obviously improved heat transfer in the tip region for the trailing edge internal cooling channel.


Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


Author(s):  
Chaoyi Wan ◽  
Yu Rao ◽  
Xiang Zhang

A numerical investigation of the heat transfer characteristics within an array of impingement jets on a flat and square pin-fin roughened plate with spent air in one direction has been conducted. Four types of optimized pin-fin configurations and the flat plate have been investigated in the Reynolds number range of 15000–35000. All the computation results have been validated well with the data of published literature. The effects of variation of jet Reynolds number and different configurations on the distribution of the average and local Nusselt number and the related pressure loss have been obtained. The highest total heat transfer rate increased up to 162% with barely any extra pressure loss compared with that of the flat plate. Pressure distributions and streamlines have also been captured to explain the heat transfer characteristic.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Katharine K. Ferster ◽  
Kathryn L. Kirsch ◽  
Karen A. Thole

The demand for higher efficiency is ever present in the gas turbine field and can be achieved through many different approaches. While additively manufactured parts have only recently been introduced into the hot section of a gas turbine engine, the manufacturing technology shows promise for more widespread implementation since the process allows a designer to push the limits on capabilities of traditional machining and potentially impact turbine efficiencies. Pin fins are conventionally used in turbine airfoils to remove heat from locations in which high thermal and mechanical stresses are present. This study employs the benefits of additive manufacturing to make uniquely shaped pin fins, with the goal of increased performance over conventional cylindrical pin fin arrays. Triangular, star, and spherical shaped pin fins placed in microchannel test coupons were manufactured using direct metal laser sintering (DMLS). These coupons were experimentally investigated for pressure loss and heat transfer at a range of Reynolds numbers. Spacing, number of pin fins in the array, and pin fin geometry were variables that changed pressure loss and heat transfer in this study. Results indicate that the additively manufactured triangles and cylinders outperform conventional pin fin arrays, while stars and dimpled spheres did not.


1998 ◽  
Vol 4 (2) ◽  
pp. 113-128 ◽  
Author(s):  
R. J. Goldstein ◽  
S. B. Chen

The mass transfer (analogous to heat transfer) and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF) and two stepped-diameter circular fins (SDCF1 and SDCF2). Flow visualization using oil-lampblack reveals complex flow characteristics associated with the repeated production of horseshoe vortices and fin wakes, and the interactions among these. The SDCF1 and SDCF2 arrays show flow characteristics different from the UDCF array due to downflow from the steps. For all arrays tested, the near-endwall flow varies row by row in the initial rows until it reaches a stable pattern after the third row. The row-averaged Sherwood numbers obtained from the naphthalene sublimation experiment also show a row-by-row variation pattern similar to the flow results. While the SDCF2 array has the highest mass transfer rate, the SDCF1 array has the smallest pressure loss at the same approach-flow velocity. The fin surfaces have higher array-averaged Sherwood number than the endwall and the ratio between these changes with fin shape and Reynolds number. The performance of the pin-fin arrays is analyzed under two different constraints: the mass[heat transfer rate at fixed pumping power, and the mass/heat transfer area and pressure loss to fulfill fixed heat load at a fixed mass flow rate. In both cases, the SDCF2 array shows the best performance.


Author(s):  
Oğuz Uzol ◽  
Cengiz Camci

Detailed experimental investigation of the wall heat transfer enhancement and total pressure loss characteristics for two alternative elliptical pin fin arrays is conducted and the results are compared to the conventional circular pin fin arrays. Two different elliptical pin fin geometries with different major axis lengths are tested, both having a minor axis length equal to the circular fin diameter and positioned at zero degrees angle of attack to the free stream flow. The major axis lengths for the two elliptical fins are 1.67 and 2.5 times the circular fin diameter, respectively. The pin fin arrays with H/D = 1.5 are positioned in a staggered 2 row configuration with 3 fins in the first row and 2 fins in the second row with S/D = X/D = 2. Endwall heat transfer and total pressure loss measurements are performed two diameter downstream of the pin fin arrays (X/D = 2) in a rectangular cross-section tunnel with an aspect ratio of 4.8 and for varying Reynolds numbers between 10000 and 47000 based on the inlet velocity and the fin diameter. Liquid Crystal Thermography is used for the measurement of convective heat transfer coefficient distributions on the endwall inside the wake. The results show that the wall heat transfer enhancement capability of the circular pin fin array is about 25–30% higher than the elliptical pin fin arrays in average. However in terms of total pressure loss, the circular pin fin arrays generate 100–200% more pressure loss than the elliptical pin fin arrays. This makes the elliptical fin arrays very promising cooling devices as an alternative to conventional circular pin fin arrays used in gas turbine blade cooling applications.


2005 ◽  
Vol 127 (5) ◽  
pp. 458-471 ◽  
Author(s):  
Oguz Uzol ◽  
Cengiz Camci

This paper presents the results of heat transfer, total pressure loss, and wake flow field measurements downstream of two-row staggered elliptical and circular pin fin arrays. Two different types of elliptical fins are tested, i.e., a Standard Elliptical Fin (SEF) and a fin that is based on NACA four digit symmetrical airfoil shapes (N fin). The results are compared to those of a corresponding circular pin fin array. The minor axis lengths for both types of elliptical fins are kept equal to the diameter of the circular fins. Experiments are performed using Liquid Crystal Thermography and total pressure probe wake surveys in a Reynolds number range of 18 000 and 86 000 as well as Particle Image Velocimetry (PIV) measurements at ReD=18 000. The pin fins had a height-to-diameter ratio of 1.5. The streamwise and the transverse spacings were equal to one circular fin diameter, i.e., S/D=X/D=2. For the circular fin array, average Nusselt numbers on the endwall within the wake are about 27% higher than those of SEF and N fin arrays. Different local heat transfer enhancement patterns are observed for elliptical and circular fins. In terms of total pressure loss, there is a substantial reduction in case of SEF and N fins. The loss levels for the circular fin are 46.5% and 59.5% higher on average than those of the SEF and N fins, respectively. An examination of the Reynolds analogy performance parameter show that the performance indices of the SEF and the N fins are 1.49 and 2.0 times higher on average than that of circular fins, respectively. The thermal performance indices show a collapse of the data, and the differences are much less evident. Nevertheless, N fins still show slightly higher thermal performance values. The wake flow field measurements show that the circular fin array creates a relatively large low momentum wake zone compared to the SEF and N fin arrays. The wake trajectories of the first row of fins in circular, SEF and N fin arrays are also different from each other. The turbulent kinetic energy levels within the wake of the circular fin array are higher than those for the SEF and the N fin arrays. The transverse variations in turbulence levels correlate well with the corresponding local heat transfer enhancement variations.


1998 ◽  
Vol 120 (2) ◽  
pp. 362-367 ◽  
Author(s):  
M. K. Chyu ◽  
Y. C. Hsing ◽  
V. Natarajan

The present study explores the heat transfer enhancement induced by arrays of cubic fins. The fin element is either a cube or a diamond in shape. The array configurations studied include both in-line and staggered arrays of seven rows and five columns. Both cubic arrays have the same geometric parameters, i.e., H/D = 1, S/D = X/D = 2.5, which are similar to those of earlier studies on circular pin-fin arrays. The present results indicate that the cube element in either array always yields the highest heat transfer, followed by diamond and circular pin-fin. Arrays with diamond-shaped elements generally cause the greater pressure loss than those with either cubes or pin fins. For a given element shape, a staggered array generally produces higher heat transfer enhancement and pressure loss than the corresponding inline array. Cubic arrays can be viable alternatives for pedestal cooling near a blade trailing edge.


Sign in / Sign up

Export Citation Format

Share Document