A Comparative Study of Metaheuristic Techniques for the Thermoenvironomic Optimization of a Gas Turbine-Based Benchmark Combined Heat and Power System

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
J. Nondy ◽  
T. K. Gogoi

Abstract This paper presents a comparative study of four metaheuristic techniques, namely, the particle swarm optimization (PSO), genetic algorithm (GA), simulated annealing (SA), and the harmony search (HS), used in thermoenvironomic optimization of a benchmark gas turbine-based combined heat and power system known as CGAM problem. The performance comparison of the metaheuristic techniques is conducted by executing each algorithm for 30 runs to evaluate the reproducibility and stability of the optimal solutions. The study takes the exergetic, economic, and environmental factors into consideration in defining the thermoenvironomic objective function in terms of system cost rate. The thermodynamic and the economic model vis-à-vis optimization is validated by comparing the present results with previously published ones. From the optimal results, the PSO was found to be the most effective technique for thermoenvironomic optimization of the CGAM problem. Further, to highlight the benefits of optimization, the results obtained from the best method (PSO) are compared with those obtained by using the base case design variables recommended previously for the classical CGAM problem. The comparative results reveal that the system cost rate and the exergoeconomic factor of the CGAM system are reduced by 10.25% and 5.58%, respectively. Besides, the CO2 emission also reduces from 16.34 tons/h to 15.17 tons/h.

Energy ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Sebastian Lepszy ◽  
Katarzyna Wójcik

Author(s):  
Thomas Bexten ◽  
Manfred Wirsum ◽  
Björn Roscher ◽  
Ralf Schelenz ◽  
Georg Jacobs

Abstract Hydrogen-fired gas turbines have the potential to play an important role in decarbonized energy sectors. However, a demand-oriented supply of CO2-neutral hydrogen for the operation of gas turbines is technically and economically challenging. These challenges mainly arise due to various interdependencies between the volatility of renewable power generation, available hydrogen production capacities, available hydrogen storage capacities and the operational demands to be met by gas turbines. The present study aims to quantify these interdependencies by conducting a detailed model-based analysis of an exemplary combined heat and power system featuring a hydrogen-fired industrial gas turbine with on-site hydrogen production via electrolysis and on-site hydrogen storage in pressure vessels. In order to identify the sought-after interdependencies, simulation runs featuring various combinations of available hydrogen production and storage capacities are analyzed. If only local power surpluses are utilized for the electrolysis, the obtained results reveal a strong non-linear impact of both the hydrogen production capacity and the storage capacity on the ability to provide hydrogen for the gas turbine. Furthermore, the results indicate that an exclusive utilization of local power surpluses leads to very limited periods of hydrogen-based gas turbine operation and low utilization rates of the available hydrogen production and storage capacities. If additional power for the operation of electrolyzers is supplied by the grid, increased utilization rates and prolonged periods of hydrogen-based gas turbine operation can be achieved. However, in order to realize an overall reduction of CO2 emissions, this mode of operation requires the supply of large quantities of renewable power by the grid. Furthermore, the results of an additional economic analysis reveal that both investigated operational modes are currently not economically viable within the considered economic framework.


2011 ◽  
Vol 14 (2) ◽  
pp. 35-40
Author(s):  
Do-Won Kang ◽  
Jong-Jun Lee ◽  
Tong-Seop Kim ◽  
Kwang-Beom Hur

Sign in / Sign up

Export Citation Format

Share Document