Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant

Energy ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Sebastian Lepszy ◽  
Katarzyna Wójcik
2019 ◽  
Vol 141 (05) ◽  
pp. 46-48
Author(s):  
Lee S. Langston

An updated report is given on the University of Connecticut’s gas turbine combined heat and power plant, now in operation for 13 years after its start in 2006. It has supplied the Storrs Campus with all of its electricity, heating and cooling needs, using three gas turbines that are the heart of the CHP plant. In addition to saving more than $180 million over its projected 40 year life, the CHP plant provides educational benefits for the University.


2019 ◽  
Vol 82 ◽  
pp. 192-203 ◽  
Author(s):  
Guillermo Martinez Castilla ◽  
Maximilian Biermann ◽  
Rubén M. Montañés ◽  
Fredrik Normann ◽  
Filip Johnsson

Author(s):  
S. Can Gülen ◽  
Chris Hall

This paper describes a gas turbine combined cycle (GTCC) power plant system, which addresses the three key design challenges of postcombustion CO2 capture from the stack gas of a GTCC power plant using aqueous amine-based scrubbing method by offering the following: (i) low heat recovery steam generator (HRSG) stack gas temperature, (ii) increased HRSG stack gas CO2 content, and (iii) decreased HRSG stack gas O2 content. This is achieved by combining two bottoming cycle modifications in an inventive manner, i.e., (i) high supplementary (duct) firing in the HRSG and (ii) recirculation of the HRSG stack gas. It is shown that, compared to an existing natural gas-fired GTCC power plant with postcombustion capture, it is possible to reduce the CO2 capture penalty—power diverted away from generation—by almost 65% and the overall capital cost ($/kW) by about 35%.


2022 ◽  
Vol 14 (1) ◽  
pp. 533
Author(s):  
Alberto Fichera ◽  
Samiran Samanta ◽  
Rosaria Volpe

This study aims to propose the repowering of an existing Italian natural-gas fired combined cycle power plant through the integration of Molten Carbonate Fuel Cells (MCFC) downstream of the gas turbine for CO2 capture and to pursuit an exergetic analysis of the two schemes. The flue gases of the turbine are used to feed the cathode of the MCFC, where CO2 is captured and transported to the anode while generating electric power. The retrofitted plant produces 787.454 MW, in particular, 435.29 MW from the gas turbine, 248.9 MW from the steam cycle, and 135.283 MW from the MCFC. Around 42.4% of the exergy destruction has been obtained, the majority belonging to the combustion chamber and, in minor percentages, to the gas turbine and the MCFC. The overall net plant efficiency and net exergy efficiency are estimated to be around 55.34 and 53.34%, respectively. Finally, the specific CO2 emission is around 66.67 kg/MWh, with around 2 million tons of carbon dioxide sequestrated.


2019 ◽  
Vol 4 (4) ◽  
pp. 17-23
Author(s):  
Barikuura Gbonee ◽  
Barinyima Nkoi ◽  
John Sodiki

This research presents the performance assessment of a combined heat and power plant operating in the Niger Delta region of Nigeria. The main focus is to evaluate the performance parameters of the gas turbine unit and the waste heat recovery generator section of the combined-heat-and-power plant. Data were gathered from the manufacturer’s manual, field and panel operator’s log sheets and the human machine interface (HMI) monitoring screen. The standard thermodynamic equations were used to determine the appropriate parameters of the various components of the gas turbine power plant as well as that of the heat exchangers of the heat recovery steam generator (HRSG). The outcome of all analysis indicated that for every 10C rise in ambient temperature of the compressor air intake there is an average of 0.146MW drop in the gas turbine power output, a fall of about 0.176% in the thermal efficiency of the plant, a decrease of about 2.46% in the combined-cycle thermal efficiency and an increase of about 0.0323 Kg/Kwh in specific fuel consumption of the plant. In evaluating the performance of the Waste Heat Boiler (WHB), the principle of heat balance above pinch was applied to a single steam pressure HRSG exhaust gas/steam temperature profile versus exhaust heat flow. Hence, the evaporative capacity (steam flow) of the HRSG was computed from the total heat transfer in the super-heaters and evaporator tubes using heat balance above pinch. The analysis revealed that the equivalent evaporation, evaporative capacity (steam flow) and the HRSG thermal efficiency depends on the heat exchanger’s heat load and its effective maintenance.


Sign in / Sign up

Export Citation Format

Share Document