Combined-Hole Film Cooling Designs Based on the Construction of Antikidney Vortex Structure: A Review

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Rui Zhu ◽  
Guohua Zhang ◽  
Shulei Li ◽  
Gongnan Xie

Abstract Film cooling is one of the most efficient and widely used cooling methods for high-temperature components. The interaction between the film cooling jet and main flow creates the counter-rotating vortex pair (CRVP), which enhances the mixing between coolant and hot stream and lifts the coolant film off the protected surface. The desire to overcome the unfavorable effects of CRVP and thus efficiently improve cooling effectiveness promotes various new combined-hole designs for film cooling. In this review paper, a summary of previous progress on film cooling and a special focus on recent literature related to the combined-hole film cooling designs with less difficulty in machining are provided. The underlying mechanisms of the enhancement in cooling effectiveness and film coverage due to antikidney vortex structure by combined holes are analyzed. Some perspectives on future prospects are finally addressed.

Author(s):  
Prakhar Jindal ◽  
Shubham Agarwal ◽  
R. P. Sharma ◽  
A. K. Roy

The paper presents a novel study on film cooling effectiveness of a 3D flat plate with a multihole arrangement of mixed hole shapes. The film cooling arrangement consists of two rows of coolant holes, organized in a staggered pattern with an L/D (length to diameter ratio) of 10. The two rows consist of varied combinations of triangular and semi-elliptic shaped holes for the enhancement of film-cooling effectiveness. The results were obtained for a coolant to mainstream temperature ratio of 0.5 and a blowing ratio of 1.0. The computed flow temperature fields are presented in addition to the local two-dimensional streamwise and spanwise distribution of film cooling effectiveness. Validation of the results obtained from the turbulence model has been done with the experimental data of centerline film cooling effectiveness downstream of the cooling holes available in the open literature. The results showed the rapid merging of coolant jets emerging from front row of multiholes with the secondary staggered row of mixed holes. Due to the mainstream–coolant jet interaction, the strength of the counter rotating vortex pair was mitigated in the downstream region for certain arrangement of mixed hole shapes. The optimal hole combination with maximum overall effectiveness has been deduced from this study. The best configuration (M.R. VI) not only favored for the developed film, but also enhanced the averaged film cooling effectiveness to a large extent.


Author(s):  
Emin Issakhanian ◽  
Christopher J. Elkins ◽  
John K. Eaton

The need for improvements in film cooling effectiveness over traditional cylindrical film cooling holes has led to varied shaped hole and sister hole designs of increasing complexity. This paper presents a simpler shaped-hole design which shows improved film cooling effectiveness over both cylindrical holes and diffusing fan-shaped holes without the geometric complexity of the latter. Magnetic resonance imaging measurement techniques are used to reveal the coupled 3D velocity and coolant mixing from film cooling holes which are of a constant oval cross-section as opposed to round. The oval shaped hole yielded an area-averaged adiabatic effectiveness twice that of the diffusing fan-shaped hole tested. Three component mean velocity measurements within the channel and cooling hole showed the flow features and vorticity fields which explain the improved performance of the oval shaped hole. As compared to the round hole, the oval hole leads to a more complex vorticity field which reduces the strength of the main counter-rotating vortex pair. The counter-rotating vortex pair acts to lift the coolant away from the turbine blade surface and thus strongly reduces the film cooling effectiveness. The weaker vortices allow coolant to stay closer to the blade surface and to remain relatively unmixed with the main flow over a longer distance. Thus, the oval-shaped film cooling hole provides a simpler solution for improving film cooling effectiveness beyond circular hole and diffusing hole designs.


Author(s):  
Hao-Ming Li ◽  
Wahid Ghaly ◽  
Ibrahim Hassan

A new advanced film cooling scheme, named high-aspect-ratio holes has been proposed. Four configurations were designed, and numerically simulated under density ratio of 2 and different blowing ratios. All configurations demonstrate extremely high film cooling effectiveness values, some are as high as the so-called perfect performance, while their mechanical strength are similar to the conventional schemes. The new scheme exhibits two traits distinctive from the conventional geometries: Its film cooling effectiveness is much higher than the coverage ratio (t/P), and the high film cooling effectiveness is obtained under strong counter-rotating vortex pair (CRVP). It has been found that, in the new scheme, along with the aspect ratio value increase, the CRVP move away from the coolant-mainstream interface, and the coolant laterally expands in the vicinity of the exit. Consequently, a continuous coolant film would occur near the trailing edge position if aspect ratio is high enough. The approach of high-aspect-ratio holes could be used to design the highest film cooling performance geometries.


Author(s):  
Aaron F. Shinn ◽  
S. Pratap Vanka

Large Eddy Simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported with the jet modeled using a plenum/pipe configuration. This configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Baitao An ◽  
Jianjun Liu ◽  
Chao Zhang ◽  
Sijing Zhou

This paper presents a method to improve the film-cooling effectiveness of cylindrical holes. A short crescent-shaped block is placed at the downstream of a cylindrical cooling hole. The block shape is defined by a number of geometric parameters including block height, length and width, etc. The single row hole on a flat plate with inclination angle of 30 deg, pitch ratio of 3, and length-diameter ratio of 6.25 was chosen as the baseline test case. Film-cooling effectiveness for the cylindrical hole with or without the downstream short crescent-shaped block was measured by using the pressure sensitive paint (PSP) technique. The density ratio of coolant (argon) to mainstream air is 1.38. The blowing ratios vary from 0.5 to 1.25. The results showed that the lateral averaged cooling effectiveness is increased remarkably when the downstream block is present. The downstream short block allows the main body of the coolant jet to pass over the block top and to form a new down-wash vortex pair, which increases the coolant spread in the lateral direction. The effects of each geometrical parameter of the block on the film-cooling effectiveness were studied in detail.


Author(s):  
Young Seok Kang ◽  
Sangook Jun ◽  
Dong-Ho Rhee

Abstract Large eddy simulations on well-known 7-7-7 fan shaped cooling hole have been carried out. Film cooling methods are generally applied to high pressure turbine, of which flow condition is extremely turbulent because high pressure turbines are generally located downstream combustor in gas turbines. However, different to RANS simulations, implementing turbulence at the main flow inlet is not simple in LES. For this reason, several numerical techniques have been devised to give turbulence information at the inlet boundary condition in LES. In this study, rectangular turbulator was located in front of the cooling hole to generate turbulent boundary flow in the main flow. Another method used in this study is transient table method to simulate turbulent flow at the main flow inlet. Without turbulent velocity components in approaching flow, laterally discharged cooling flow touches wall while it forms a vortex structure. Then high film cooling effectiveness region around the cooling hole appears. In the meanwhile, when approaching flow is turbulent, the laterally discharged cooling flow no more forms vortex structure and dissipated to the main flow and resultant high effectiveness region disappears. Both turbulence generation methods showed that turbulent intensity of the main flow affects effective range of the cooling flow and resultant film cooling effectiveness distributions. Also high turbulence intensity of the main flow stimulates early break down of the vortex structure coming out of the cooling hole and its dissipation to the main flow. It means high turbulent intensity restricts film cooling flow coverage. Another lesson from the study is that vortex generated from the cooling hole, its development and dissipation to the main flow, have an important role to understand film cooling effectiveness distributions around the cooling hole.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is measured by pressure sensitive paint (PSP). The inclination angle (θ) of all the holes is 35 deg, and the compound angle (β) is ±45 deg. Effects of the spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, and 2.0d) between the two interacting jets of DJFC holes are studied, while the streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between the two jets of DJFC holes has different effects at different spanwise distances. For a small spanwise distance (p/d = 0), the interaction between the jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid-spanwise distances (p/d = 0.5 and 1.0), the antikidney vortex pair dominates the interaction and pushes both of the jets down, thus leading to better coolant coverage and higher effectiveness. As the spanwise distance becomes larger (p/d ≥ 1.5), the pressing effect almost disappears, and the antikidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At a higher blowing ratio, the interaction between the jets of DJFC holes happens later.


2014 ◽  
Vol 660 ◽  
pp. 664-668
Author(s):  
Kamil Abdullah ◽  
Hazim Fadli Aminnuddin ◽  
Akmal Nizam Mohammed

Film cooling has been extensively used to provide thermal protection for the external surface of the gas turbine blades. Numerous number of film cooling holes designs and arrangements have been introduced. The main motivation of these designs and arrangements are to reduce the lift-off effect cause by the counter rotating vortices (CRVP) produce by cylindrical cooling hole. One of the efforts is the introduction of newly found anti-vortex film cooling design. The present study focuses on anti-vortex holes arrangement consists of a main hole and pair of smaller holes. All three holes share a common inlet with the outlet of the smaller holes varies base on it relative position towards the main hole. Three anti-vortex holes arrangements have been considered; downstream anti-vortex hole arrangement (DAV), lateral anti-vortex hole arrangement (LAV), and upstream anti-vortex hole arrangement (UAV). In addition, a single hole (SH) film cooling has also been considered as the baseline. The investigation make used of ANSYS CFX software ver. 14. The investigations are made through Reynolds Average Navier Stokes analyses with the application of shear k-ε turbulence model. The results show that the anti-vortex designs produce significant improvement in term of film cooling effectiveness and distribution. The LAV arrangement shows the best film cooling effectiveness distribution among all considered cases and is consistent for all blowing ratios (BR). The results also unveil the formation of new vortex pair on both side of the primary hole CRVP. Interaction between the new vortices and the main CRVP structure reduce the lift off explaining the increased lateral film effectiveness.


Author(s):  
Ali Rozati ◽  
Danesh K. Tafti

A numerical investigation is conducted to study leading edge film cooling at a compound angle with Large Eddy Simulation (LES). The domain geometry is adopted from an experimental set-up (Ekkad et al. [14]) where turbine blade leading edge is represented by a semi-cylindrical blunt body. The leading edge has two rows of coolant holes located at ±15° of the stagnation line. Coolant jets are injected into the flow field at 30° (spanwise) and 90° (streamwise). Reynolds number of the mainstream is 100,000 and jet to mainstream velocity and density ratios are 0.4 and 1.0, respectively. The results show the existence of an asymmetric counter-rotating vortex pair in the immediate wake of the coolant jet. In addition to these primary structures, vortex tubes on the windward side of the jet are convected downstream over and to the aft- and fore-side of the counter-rotating vortex pair. All these structures play a role in the mixing of mainstream fluid with the coolant. A turbulent boundary layer forms within 2 jet diameters downstream of the jet. A characteristic low frequency interaction between the jet and the mainstream is identified at a non-dimensional frequency between 0.79 and 0.95 based on jet diameter and velocity. The spanwise averaged adiabatic effectiveness agrees well with the experiments when fully-developed turbulence is used to provide time-dependent boundary conditions at the jet inlet, without which the calculated effectiveness is overpredicted.


Sign in / Sign up

Export Citation Format

Share Document