Parametric Study on Anti-Vortex Film Cooling Hole Arrangements

2014 ◽  
Vol 660 ◽  
pp. 664-668
Author(s):  
Kamil Abdullah ◽  
Hazim Fadli Aminnuddin ◽  
Akmal Nizam Mohammed

Film cooling has been extensively used to provide thermal protection for the external surface of the gas turbine blades. Numerous number of film cooling holes designs and arrangements have been introduced. The main motivation of these designs and arrangements are to reduce the lift-off effect cause by the counter rotating vortices (CRVP) produce by cylindrical cooling hole. One of the efforts is the introduction of newly found anti-vortex film cooling design. The present study focuses on anti-vortex holes arrangement consists of a main hole and pair of smaller holes. All three holes share a common inlet with the outlet of the smaller holes varies base on it relative position towards the main hole. Three anti-vortex holes arrangements have been considered; downstream anti-vortex hole arrangement (DAV), lateral anti-vortex hole arrangement (LAV), and upstream anti-vortex hole arrangement (UAV). In addition, a single hole (SH) film cooling has also been considered as the baseline. The investigation make used of ANSYS CFX software ver. 14. The investigations are made through Reynolds Average Navier Stokes analyses with the application of shear k-ε turbulence model. The results show that the anti-vortex designs produce significant improvement in term of film cooling effectiveness and distribution. The LAV arrangement shows the best film cooling effectiveness distribution among all considered cases and is consistent for all blowing ratios (BR). The results also unveil the formation of new vortex pair on both side of the primary hole CRVP. Interaction between the new vortices and the main CRVP structure reduce the lift off explaining the increased lateral film effectiveness.

Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents detailed measurements of the film-cooling effectiveness for three single, scaled-up film-cooling hole geometries. The hole geometries investigated include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fanshaped and a laidback fanshaped hole). The flow conditions considered are the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the blowing ratio (up to 2). The coolant-to-mainflow temperature ratio is kept constant at 0.54. The measurements are performed by means of an infrared camera system which provides a two-dimensional distribution of the film-cooling effectiveness in the nearfield of the cooling hole down to x/D = 10. As compared to the cylindrical hole, both expanded holes show significantly improved thermal protection of the surface downstream of the ejection location, particularly at high blowing ratios. The laidback fanshaped hole provides a better lateral spreading of the ejected coolant than the fanshaped hole which leads to higher laterally averaged film-cooling effectiveness. Coolant passage crossflow Mach number and orientation strongly affect the flowfield of the jet being ejected from the hole and, therefore, have an important impact on film-cooling performance.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Baitao An ◽  
Jianjun Liu ◽  
Chao Zhang ◽  
Sijing Zhou

This paper presents a method to improve the film-cooling effectiveness of cylindrical holes. A short crescent-shaped block is placed at the downstream of a cylindrical cooling hole. The block shape is defined by a number of geometric parameters including block height, length and width, etc. The single row hole on a flat plate with inclination angle of 30 deg, pitch ratio of 3, and length-diameter ratio of 6.25 was chosen as the baseline test case. Film-cooling effectiveness for the cylindrical hole with or without the downstream short crescent-shaped block was measured by using the pressure sensitive paint (PSP) technique. The density ratio of coolant (argon) to mainstream air is 1.38. The blowing ratios vary from 0.5 to 1.25. The results showed that the lateral averaged cooling effectiveness is increased remarkably when the downstream block is present. The downstream short block allows the main body of the coolant jet to pass over the block top and to form a new down-wash vortex pair, which increases the coolant spread in the lateral direction. The effects of each geometrical parameter of the block on the film-cooling effectiveness were studied in detail.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Atul Kohli ◽  
David G. Bogard

In this study, a computational fluid dynamics (CFD)-based optimization process is used to change the contour of the airfoil near a suction-side cooling hole in order to improve its film effectiveness characteristics. An overview of the optimization process, which includes automated geometry, grid generation, and CFD analyses, is provided. From the results for the optimized geometry, it is clear that the detachment of the cooling jet is much reduced and the cooling jet spread in the spanwise direction is increased substantially. The new external contour was then tested in a low-speed wind tunnel to provide a direct measure of the predictive capability. Comparisons to verification test data indicate that good agreement was achieved for both pressure and film cooling effectiveness behavior. This study proves that despite its limitations, current Reynolds averaged Navier-Stokes (RANS) methodology can be used a viable design tool and lead to innovative concepts for improving film cooling effectiveness.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Yang Xu ◽  
Hui-ren Zhu ◽  
Wei-jiang Xu ◽  
Jian-sheng Wei

Abstract Trailing edge slot film cooling is a widely used method for protecting the trailing edge of turbine blades from hot gas impingement. The structures that separate the slots, known as “lands,” come in a variety of configurations. This paper presents the effects of the trailing edge with different lands on the film cooling performance. Experimental studies are conducted on the film cooling effectiveness and Nusselt number with different lands. Four trailing edge configurations, including the straight lands, the beveling lands, the fillet lands and the tapered lands are considered under four blowing ratios (0.5, 0.7, 1.0 and 1.5). The Reynolds numbers of mainstream is fixed as 375,000. Film cooling effectiveness and Nusselt number performances are measured by transient liquid crystal measurement technique. Reynolds-averaged Navier-Stokes (RANS) simulation with realizable k-ε turbulence model and enhanced wall functions are performed using a commercial code Fluent. In each case, the slot height is kept constant. It is shown that the beveling lands, the fillet lands and the tapered lands have higher cooling effectiveness and lower Nusselt number compared with the straight lands. Under higher blowing ratios, the trailing edges of all four lands have higher cooling effectiveness and higher Nusselt number.


Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard

Abstract Understanding the flow from a cooling hole is very important to be able to properly control film cooling of turbine blades. For this purpose, large eddy simulation (LES) investigation of the flow inside a cylindrical film cooling hole is presented in this paper. Two different geometries, with different hole metering lengths, are investigated at a blowing ratio of 0.5. The main flow structure in the hole are the hairpin vortices that originate from a shear layer formed due to flow separation near the hole entry. The comparison of these hairpin vortices in the two cases with different hole metering length is presented in detail. The results show that in case of the hole with longer length the hairpin vortices dissociate within the hole itself. In such a case a uniform flow is seen at the hole exit. However, when the hole length is significantly decreased, it is shown that these vortices exit the hole and effect the vortex structures outside the hole, thereby accounting for the reduction in film cooling effectiveness. Overall, these results bring forth one other major reason for the reduction in film cooling effectiveness with reduction in hole length, i.e. the exit of in-hole hairpin vortices into the crossflow.


Author(s):  
Muhammad Awais ◽  
Reaz Hasan ◽  
Md. Hamidur Rahman

Modern gas turbine engines operate at significantly high temperatures to improve thermal efficiency and power output to a greater extent. The enhancement in rotor inlet temperature (RIT) increases the heat transfer rate to the turbine blades which requires sophisticated cooling schemes to maintain the blade temperature in acceptable levels. Therefore, the present work refers to the numerical investigation of film cooling technique applied in gas turbines. The cooling performance of two different shaped holes namely Ginkgo Forward (GF) and Ginkgo Reverse (GR)) were investigated in terms of centerline and local lateral effectiveness and comprehensive comparison was made with the cooling performance of cylindrical (CY) hole. The investigations were performed at two density ratios (DR=1.6, 2.0) and three different blowing ratios (BR=1.0, 1.5 and 2.0). At all the operating conditions, the results demonstrated significant augmentation in centerline and lateral effectiveness when GR shaped hole was employed followed by the GF and CY cooling holes. For shaped holes, the low velocity gradient through the film alleviated jet lift off and turbulence intensity resulting in decreased entrainment of hot gas to bottom surface. To conclude, the lateral coverage due to the shaped cooling holes significantly enhanced the thermal protection and overall cooling performance.


Author(s):  
David L. Rigby ◽  
James D. Heidmann

Calculations are presented demonstrating the effect of placing a delta vortex generator downstream of a film cooling hole. The effects of blowing ratio, density ratio, and spanwise pitch are included in the study. Flow over a flat plate with film cooling holes oriented at a 30 degree angle was investigated. The Reynolds numbers based on the freestream velocity and the hole diameter was 11,300. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-ω turbulence model. A structured multi-block grid was used with approximately one million cells, and average y+ values on the order of unity. Local and span averaged effectiveness are presented. Analysis and visualization of the flow are presented as well as a discussion on the mechanisms which contribute to the dramatic improvement in effectiveness. The results demonstrate that the delta vortex generator was able to annihilate the up-wash vortex pair produced by the film hole and produce a down-wash pair downstream.


Computation ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 49 ◽  
Author(s):  
Sheng-Chang Zhang ◽  
Jing-Zhou Zhang ◽  
Xiao-Ming Tan

Film cooling enhancement by incorporating an upstream sand-dune-shaped ramp (SDSR) to the film hole exit was numerically investigated on a flat plate under typical blowing ratios ranging from 0.5 to 1.5. Three heights of SDSRs were designed: 0.25D, 0.5D, and 0.75D. The results indicated that the upstream SDSR effectively controlled the near-wall primary flow and subsequent mutual interaction with the coolant jet, which was the main mechanism of the film cooling enhancement. First, a pair of anti-kidney vortices was formed at the trailing ridges of the SDSR, which helped suppress the kidney vortex pair due to the interaction between the coolant jet and the primary flow. Second, a weak separation and a low pressure zone were induced behind the backside of the SDSR, which caused the coolant jet to spread around the film cooling hole and improve the lateral film coverage. With respect to the baseline cylindrical film cooling holes, the effect of the upstream SDSR was distinct under different blowing ratios. Under a low blowing ratio, the upstream SDSR shortened the streetwise film layer coverage in the vicinity of the film hole centerline but increased the span-wise film layer coverage. A relatively optimal ramp height seemed to be 0.5D. Under a high blowing ratio, both the streamwise and span-wise film layer coverages improved in comparison with the baseline case. The film cooling effectiveness improved gradually with increasing ramp height.


Author(s):  
Mahmood Silieti ◽  
Eduardo Divo ◽  
Alain J. Kassab

This paper documents a computational investigation of the film-cooling effectiveness of a 3-D gas turbine endwall with one cylindrical cooling hole. The simulations were performed for an adiabatic and conjugate heat transfer models. Turbulence closure was investigated using five different turbulence models; the standard k-ε model, the RNG k-ε model, the realizable k-ε model, the standard k-ε model, as well as the SST k-ω model. Results were obtained for a blowing ratio of 2.0, and a coolant-to-mainflow temperature ratio of 0.54. The simulations used a dense, high quality, O-type, hexahedral grid. The computed flow/temperature fields are presented, in addition to local, two-dimensional distribution of film cooling effectiveness for the adiabatic and conjugate cases. Results are compared to experimental data in terms of centerline film cooling effectiveness downstream cooling-hole, the predictions with realizable k-ε turbulence model exhibited the best agreement especially in the region for (x/D ≤ 6). All turbulence models predicted the jet lift-off. Also, the results show the effect of the conjugate heat transfer on the temperature (effectiveness) field in the film-cooling hole region and, thus, the additional heating up of the cooling jet itself.


1998 ◽  
Vol 120 (3) ◽  
pp. 549-556 ◽  
Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents detailed measurements of the film-cooling effectiveness for three single, scaled-up film-cooling hole geometries. The hole geometries investigated include a cylindrical hole and two holes with a diffuser-shaped exit portion (i.e., a fan-shaped and a laid-back fan-shaped hole). The flow conditions considered are the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the blowing ratio (up to 2). The coolant-to-mainflow temperature ratio is kept constant at 0.54. The measurements are performed by means of an infrared camera system, which provides a two-dimensional distribution of the film-cooling effectiveness in the near field of the cooling hole down to x/D = 10. As compared to the cylindrical hole, both expanded holes show significantly improved thermal protection of the surface downstream of the ejection location, particularly at high blowing ratios. The laidback fan-shaped hole provides a better lateral spreading of the ejected coolant than the fan-shaped hole, which leads to higher laterally averaged film-cooling effectiveness. Coolant passage cross-flow Mach number and orientation strongly affect the flowfield of the jet being ejected from the hole and, therefore, have an important impact on film-cooling performance.


Sign in / Sign up

Export Citation Format

Share Document