On the Accuracy of an Analytical Solution to Model Wave-Induced Loads on an Underwater Vehicle in Real-Time

Author(s):  
Joseph Klamo ◽  
Travis M. Turner ◽  
Colin Y. Cool ◽  
Kathryn I. Yeager ◽  
Young W. Kwon

Abstract The accuracy of an existing analytical solution for modeling the linear, first-order wave- induced loads on a fully submerged body is investigated. The accuracy is assessed for the situation where the underlying theoretical assumptions are met and the sensitivity of the accuracy to these assumptions is also explored. The accuracy was quantified by comparing the analytical solutions to experimental measurements from a tow tank with wave generation capability. The assessment showed that when all the assumptions are met, the heave and surge forces are predicted quite accurately but the pitch moment is over predicted. The results also showed that the deeply submerged assumption is met as long as the body does not cause a disruption of the passing wave on the free surface. The slenderness and end face curvature assumptions are also quite relaxed and the curvature assumption only affects the pitch moment accuracy. The most stringent assumption appears to be the body-of revolution assumption which can cause all three loads to be predicted poorly. The analytical solution appears to be accurate over a large parameter space and could be incorporated as a wave disturbance model into a virtual environment used to develop control and autonomy of unmanned underwater vehicles.

2017 ◽  
Author(s):  
Christopher J. Chesnakas ◽  
Daniel R. Cadel

A system has been developed to measure the turbulent lengthscales in the flow about a submerged body of revolution. The system consists of two Laser Doppler Velocimetry (LDV) probes mounted inside the body of revolution with the beams projected outside of the body through conformal windows. The measurement volumes of the two probes can be independently positioned within a plane perpendicular to the body axis. The probes are used to measure velocity time series at various spacings in the flow field. Auto- and cross-correlations are computed for each measurement pair, from which integral lengthscales are then found. Measurements are compared to canonical data from a turbulent free shear jet. In this paper, the system is described and its theory of operation detailed. Methods of computing the velocity correlations from the random-arrival-time LDV measurements are presented, and a new noise-removal scheme for non-uniformly sampled data is introduced. Six methods for calculating the integral lengthscale from autocorrelation data are reviewed, and the results discussed for the present jet data measured with LDV.


1950 ◽  
Vol 1 (4) ◽  
pp. 305-318
Author(s):  
G. N. Ward

SummaryThe approximate supersonic flow past a slender ducted body of revolution having an annular intake is determined by using the Heaviside operational calculus applied to the linearised equation for the velocity potential. It is assumed that the external and internal flows are independent. The pressures on the body are integrated to find the drag, lift and moment coefficients of the external forces. The lift and moment coefficients have the same values as for a slender body of revolution without an intake, but the formula for the drag has extra terms given in equations (32) and (56). Under extra assumptions, the lift force due to the internal pressures is estimated. The results are applicable to propulsive ducts working under the specified condition of no “ spill-over “ at the intake.


2007 ◽  
Vol 589 ◽  
pp. 353-374 ◽  
Author(s):  
P. A. GREGORY ◽  
P. N. JOUBERT ◽  
M. S. CHONG

Using the method pioneered by Gurzhienko (1934), the crossflow separation produced by a body of revolution in a steady turn is examined using a stationary deformed body placed in a wind tunnel. The body of revolution was deformed about a radius equal to three times the body's length. Surface pressure and skin-friction measurements revealed regions of separated flow occurring over the rear of the model. Extensive surface flow visualization showed the presence of separated flow bounded by a separation and reattachment line. This region of separated flow began just beyond the midpoint of the length of the body, which was consistent with the skin-friction data. Extensive turbulence measurements were performed at four cross-sections through the wake including two stations located beyond the length of the model. These measurements revealed the location of the off-body vortex, the levels of turbulent kinetic energy within the shear layer producing the off-body vorticity and the large values of 〈uw〉 stress within the wake. Velocity spectra measurements taken at several points in the wake show evidence of the inertial sublayer. Finally, surface flow topologies and outer-flow topologies are suggested based on the results of the surface flow visualization.


2021 ◽  
pp. 20-23
Author(s):  
S. V. Pashukevich ◽  

The work conducts laboratory tests on the rubber of the first group of GOST 8752-70 with the introduction of the metal components. The filler is introduced into the rubber mixture on laboratory rollers. Fine powders of copper (Cu), tin (Sn) and lead (Pb) are used as fillers. The dependences of the temperature in the contact zone of the sample and the body of revolution on the concentration of the filler and the dependence of wear on the concentration of the filler for the same loads and sliding speeds are obtained, the fillers that give the rubber the greatest wear resistance are revealed, and the rational amount of the filler is determined. The positive results of laboratory tests give grounds to recommend various equipment including aerospace equipment for use in sealing devices of hydraulic systems, rubber products with metal fillers in the indicated concentrations, which will extend their service life and increase their reliability


1959 ◽  
Vol 3 (01) ◽  
pp. 22-30
Author(s):  
Paul Golovato

The motions of a deeply submerged body with vertical-plane symmetry, e.g., a submarine, are commonly treated in a manner completely analogous to that used for aircraft motions. The body is assumed to have its lateral and longitudinal modes uncoupled. The small motions are described by a set of force-and-moment equations which are linear, second-order differential equations with constant coefficients. These proportionality constants ("stability derivatives") relate the forces and moments to the instantaneous values of the position, velocity, and acceleration of the body. They are generally experimentally determined in the wind or water tunnel, and the controlled or uncontrolled motions of the craft are predicted based thereon.


1978 ◽  
Vol 22 (04) ◽  
pp. 203-211
Author(s):  
Nils Salvesen ◽  
C. von Kerczek

Some nonlinear aspects of the two-dimensional problem of a submerged body moving with constant speed in otherwise undisturbed water of uniform depth are considered. It is shown that a theory of Benjamin which predicts a uniform rise of the free surface ahead of the body and the lowering of the mean level of the waves behind it agrees well with experimental data. The local steady-flow problem is solved by a numerical method which satisfies the exact free-surface conditions. Third-order perturbation formulas for the downstream free waves are also presented. It is found that in sufficiently shallow water, the wavelength increases with increasing disturbance strength for fixed values of the free-stream-Froude number. This is opposite to the deepwater case where the wavelength decreases with increasing disturbance strength.


1974 ◽  
Vol 18 (03) ◽  
pp. 153-168
Author(s):  
N. Matheson ◽  
P. N. Joubert

A simple so-called 'equivalent' body of revolution is proposed for reflex ship forms in an attempt to simplify calculation of the boundary layer over a ship's hull when there is no wavemaking. How­ever, exhaustive testing of one body of revolution did not produce a favorable comparison with re­sults for the corresponding reflex model. Gadd's recently proposed theory was used to calculate the boundary-layer development over the body of revolution. Reasonable agreement was obtained between the calculated and experimental results.


Sign in / Sign up

Export Citation Format

Share Document