Static and Rotordynamic Characteristics for Two Types of Novel Mixed Liquid Damper Seals With Hole-Pattern/Pocket-Textured Stator and Helically Grooved Rotor

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li ◽  
Zhenping Feng

Abstract Noncontacting liquid annular seals, such as helical groove seals, are widely used at the impeller interstage and shaft end in the liquid turbomachinery to reduce the fluid leakage and stabilize the rotor-bearing system. However, previous literatures have expounded that the helical groove seal possesses the poor sealing property at low rotational speed condition and suffers the rotor instability problem inducing by negative stiffness and damping, which is undesirable for the liquid turbomachinery. In this paper, to obtain the high sealing performance and the reliable rotordynamic capability throughout full operational conditions of machines, two novel mixed liquid damper seals, which possess a hole-pattern/pocket-textured stator matching with a helically grooved rotor, were designed and assessed for the balance piston location in a multiple-stage high-pressure centrifugal liquid pump. To assess the static and rotordynamic characteristics of these two types of mixed liquid damper seals, a three-dimensional (3D) steady computational fluid dynamics (CFD)-based method with the multiple reference frame theory was used to predict the seal leakage and drag power loss. Moreover, a novel 3D transient CFD-based perturbation method, based on the multifrequency one-dimensional stator whirling model, the multiple reference frame theory, and the mesh deformation technique, was proposed for the predictions of liquid seal rotordynamic characteristics. The reliability and accuracy of the present numerical methods were demonstrated based on the published experiment data of leakage and rotordynamic force coefficients of a helical groove liquid annular seal and a hole-pattern liquid annular seal. The leakage and rotordynamic force coefficients of these two mixed liquid damper seals were presented at five rotational speeds (0.5 krpm, 2.0 krpm, 4.0 krpm, 6.0 krpm, and 8.0 kpm) with large pressure drop of 25 MPa, and compared with three types of conventional helical groove seals (helical grooves on rotor, stator or both), two typical damper seals (hole-pattern seal, pocket damper seal with smooth rotor), and a mixed helical groove seal. Numerical results show that two novel mixed liquid damper seals both possess generally better sealing capacity than the conventional helical groove seals, especially at lower rotational speeds. The circumferentially isolated cavities (hole/pocket types) on the stator can enhance the “pumping effect” of the helical grooves for mixed helical groove seals, by weakening the swirl flow in seal clearance (which results in the increase of the fluid velocity gradient near the helically grooved rotor). What is more, the helical grooves on rotor also strengthen the dissipation of fluid kinetic energy in the isolated cavities, so the mixed liquid damper seals offer less leakage. Although the mixed liquid damper seals possess a slightly larger (less than 40%) drag power loss, it is acceptable in consideration of the reduced (∼60%) leakage for the high-power turbomachinery, such as the multiple-stage high-pressure centrifugal liquid pump. The present novel mixed liquid damper seals have pronounced rotordynamic stability advantages over the conventional helical groove seals, due to the obviously larger positive stiffness and damping. The mixed liquid damper seal with the hole-pattern stator and the helically grooved rotor (HPS/GR) possesses the lowest leakage and the largest effective damping, especially for higher rotational speeds. From the viewpoint of sealing capacity and rotor stability, the present two novel mixed liquid damper seals have the potential to become the attractive alternative seal designs for the future liquid turbomachinery.

Author(s):  
Zhi Fang ◽  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng

Abstract Non-contracting annular seals, such as helical groove seals, are widely used between the impeller stages in the liquid turbomachinery to reduce the fluid leakage and stabilize the rotor-bearing system. However, previous literature has expounded that the helical groove seals possess the poor sealing property at low rotational speed condition and face the rotor instability problem inducing by negative stiffness and damping, which is undesirable for liquid turbomachinery. In this paper, to obtain the high sealing performance and the reliable rotordynamic capability for full operational conditions of the machine, two novel mixed helical groove seals, which possess a hole-pattern/pocket-damper stator matching with a helically-grooved rotor, were designed and assessed for a multiple-stage high-pressure centrifugal liquid pump. In order to assess the static and rotordynamic characteristics of these two types of mixed helical groove seals, a three-dimensional (3D) steady CFD-based method with the multiple reference frame theory was used to predict the seal leakage and drag power loss. Moreover, a proposed 3D transient CFD-based perturbation method, based on the multi-frequency one-dimensional stator whirling model, the multiple reference frame theory and a mesh deformation technique, was utilized for the predictions of seal rotordynamic characteristics. The accuracy of the numerical methods was demonstrated based on the experiment data of leakage and rotordynamic forces coefficients of published helical groove seals and hole-pattern seal. The leakage and rotordynamic forces coefficients of these two mixed helical groove seals were presented at five rotational speeds (0.5 krpm, 2.0 krpm, 4.0 krpm, 6.0 krpm, 8.0 kpm) with large pressure drop of 25MPa, and compared with three types of conventional helical groove seal (helical grooves on rotor, stator or both), and two types of damper seals (hole-pattern seal, pocket damper seal with smooth rotor). Numerical results show that the mixed groove seals possess generally better sealing capacity than the conventional helical groove seals, especially at low rotational speed conditions. The circumferentially-isolated cavities (hole or pocket) on the stator enhance the “pumping effect” of the helical grooves for mixed helical groove seals, what is more, the helical grooves also strengthen the dissipation of kinetic energy in the isolated cavities, thus the mixed helical groove seal offers less leakage. Although the mixed helical groove seals possess a slightly larger drag power loss, it is acceptable in consideration of reduced leakage for the high-power turbomachinery. The present novel mixed helical groove seals have pronounced stability advantages over the conventional helical groove seal, due to the obvious large positive stiffness and increased damping. The mixed helical groove seal with the hole-pattern stator and the helically-grooved rotor (HPS/GR) possesses the lowest leakage and the largest effective damping, especially for the high rotational speeds. From the viewpoint of sealing capacity and rotor stability, the novel mixed groove seals are better seal concepts for liquid turbomachinery.


Author(s):  
Cori Watson ◽  
Houston Wood

Helical groove seals are non-contacting annular seals used in pumping machinery to increase the efficiency and, in the case of the balance drum, to manage the axial force on the thrust bearing. Prior work has shown that optimization of helical groove seals can reduce the leakage by two thirds given a desired pressure differential or, conversely, can significantly increase the pressure differential across the helical groove seal given a flow rate. This study evaluates the dependency of the optimal helical groove seal design on the inlet preswirl, which is the ratio of the inlet circumferential velocity to the rotor surface speed. To accomplish this goal, second stage optimization from the previously optimized helical groove seal with grooves on the stator and water as the working fluid were conducted at a series of preswirls ranging from −1 to 1. Optimization is performed using ANSYS CFX, a commercial computational fluid dynamics software and mesh independence is confirmed for the baseline case. For each preswirl case, design of experiments for the design parameters of groove width, groove depth, groove spacing, and number of grooves was performed using a Kennard-Stone Algorithm. The optimized solution is interpolated from the simulations run by using multi-factor quadratic regression from the 30 simulations in each optimization and the interpolated solution is simulated for comparison. In addition to evaluating the optimized solution’s dependency on preswirl, the viability of using swirl breaks or swirl promoting inlet passages to improve the overall efficiency of the seal is discussed. Finally, the power loss performance is evaluated for each of the seal designs simulated so that potential trade-offs can be evaluated. Overall, the results show that increasing preswirl can increase the efficiency of the helical groove seal both by improving power loss and by improving leakage.


2021 ◽  
Vol 2021 (2) ◽  
pp. 14-19
Author(s):  
Olga Reshetnikova ◽  
Boris Iznairov ◽  
Alexei Vasin ◽  
Natalia Belousova ◽  
Anastasia Panfilova

There is defined a total basing error arising during centerless ball grinding using driving disk helical grooves with different forms. On the basis of computations there is offered a design of a driving disk with the trapezoidal helical groove. A design of a supporting knife which allows carrying out efficiently an automatic position correction of the measuring base of operation size during ball grinding is offered.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li ◽  
Zhenping Feng

Abstract This paper deals with numerical predictions of the leakage flowrates, drag power, and rotordynamic force coefficients for three types of helically grooved liquid annular seals, which include a liquid annular seal with helically grooved stator (GS/SR seal), one with helically grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). A novel transient computational fluid dynamics (CFD)-based perturbation method was proposed for the predictions of the leakage flowrates, drag power, and rotordynamic force coefficients of helically grooved liquid annular seals. This method is based on the unsteady Reynolds-averaged Navier–Stokes (RANS) solution with the mesh-deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and fast Fourier transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons with the published experiment data of leakage flowrates and fluid response forces for three types of helically grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flowrates, drag powers, and rotordynamic force coefficients were presented and compared for three types of helically grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm, and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient.


Tribologia ◽  
2016 ◽  
Vol 268 (4) ◽  
pp. 191-199
Author(s):  
Leszek TOMCZEWSKI ◽  
Jarosław SĘP

The article presents the results of a sliding bearing with a helical groove on a journal. The studies included wear tests with contaminated lubrication oil and computer simulation of oil flow based on which the load capacity of a bearing was determined. The 7 bearings with different variants of helical grooves on journal bearings and classical bearings were studied. It was found that the helical groove on the journal makes it possible to significantly reduce the wear of the bearing in the case of oil contamination with hard particles. It was also shown that the groove on the journal ensures an effective reduction in wear and does not result in a significant reduction of load capacity.


Author(s):  
Zhigang Li ◽  
Zhi Fang ◽  
Jun Li ◽  
Zhenping Feng

Abstract This paper deals with numerical predictions of the leakage flow rates, drag power and rotordynamic force coefficients for three types of helically-grooved liquid annular seals, which include a liquid annular seal with helically-grooved stator (GS/SR seal), one with helically-grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). These seals are frequently used for multiple-stage centrifugal pumps as they have the advantage of low leakage (even to zero) due to the “pumping effect” of the helical grooves. However, the static and rotordynamic characteristics of helically-grooved liquid annular seals still are not fully understood, and even more pronounced is the lack of effective numerical models in the literature. A novel transient CFD-based perturbation method was proposed for the predictions of the leakage flow rates, drag power and rotordynamic force coefficients of helically-grooved liquid annular seals. This method is based on the unsteady Reynolds-Averaged Navier–Stokes (RANS) solution with the mesh deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and Fast Fourier Transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons to the published experiment data of leakage flow rates and fluid response forces for three types of helically-grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for three types of helically-grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient. Results show that the GS/GR seal has the best sealing capability, followed by the GS/SR seal and then the SS/GR seal. The leakage flow rate of all three helically-grooved seals monotonically decreases with the increasing rotational speed. The GS/SR seal possesses the best stiffness and damping capability, followed by the SS/GR seal and then the GS/GR seal. Rotordynamic instability problems are more likely caused by the GS/GR seal in multi-stage centrifugal pumps. From a rotordynamic viewpoint, the GS/SR helically-grooved liquid annular seal is a better seal concept for multi-stage centrifugal pumps.


Author(s):  
Joel Harris ◽  
Dara Childs

Static performance characteristics and rotordynamic coefficients were experimentally determined for a four-pad, spherical-seat, tilting-pad journal bearing in load-between-pad configuration. Measured static characteristics include journal static equilibrium position, estimated power loss, and trailing-edge pad temperatures. Rotordynamic coefficients were determined from curve fits of measured complex dynamic-stiffness coefficients as a functions of the excitation frequency. A frequency-independent [M]-[C]-[K] model did a good job of fitting the measurements. Test conditions included speeds from 4 to 12 krpm and unit loads from 0 to 1896 kPa (0 to 275 psi). The bearing uses cool inlet oil to decrease the pad operating temperatures and increase the bearing’s load and speed capacity. The bearing has a nominal diameter of 101.78 mm (4.0070 in). Measurements indicated significant bearing crush with a radial bearing clearance of 99.63 μm (3.92 mils) in the axis 45° counterclockwise from the loaded axis and 54.60 μm (2.15 mils) in the axis 45° clockwise from the loaded axis. The pad length is 101.60 mm (4.00 in), giving L/D = 1.00. The pad arc angle is 73°, and the pivot offset ratio is 65%. Testing was performed using a test rig described by Kaul [1], and rotordynamic coefficients were extracted using a procedure adapted from Childs and Hale [2]. A bulk-flow Navier-Stokes model was used for predictions, using adiabatic conditions for the fluid in the bearings. However, the model assumes constant nominal clearances at all pads, and an average clearance was used based on measured clearances. Measured static eccentricities and attitude angles were significantly lower than predicted. Attitude angles varied from 6° to 39° and decreased with load. Power loss was well-predicted, with a maximum value of 25 kW (34 hp). The maximum detected pad temperature was 71°C (160°C) while the temperature rise from inlet to exit was over-predicted by 8°C (14°F). Direct stiffness and damping coefficients were significantly over-predicted, but the addition of a simple pivot-stiffness in series with the measured stiffness and damping values vastly improved the agreement between theory and experiment. Direct added masses were negative to a higher degree for Myy (y load direction) at low speeds and increased with speed. With the exception of Myy at zero load, they became positive before reaching 8,000 rpm. Although significant cross-coupled stiffness terms were present, they always had the same sign, producing a whirl frequency ratio of zero and netting unconditional stability over all test conditions.


Author(s):  
Dara Childs ◽  
Joel Harris

Static performance characteristics and rotordynamic coefficients were experimentally determined for a four-pad, ball-in-socket, tilting-pad journal bearing in load-between-pad configuration. Measured static characteristics include journal static equilibrium position, estimated power loss, and trailing-edge pad temperatures. Rotordynamic coefficients were determined from curve-fits of measured complex dynamic-stiffness coefficients as a function of the excitation frequency. Aside from the cross-coupled damping coefficients, a frequency-independent [M]-[C]-[K] model did a good job of fitting the measurements. The added-mass coefficient was frequently dropped, leaving only a frequency-independent stiffness and damping coefficient. Test conditions included speeds from 4000 rpm to 12,000 rpm and unit loads from 0 kPa to 1896 kPa (0–275 psi). The bearing uses cool inlet oil to decrease the pad operating temperatures and increase the bearing’s load and speed capacity. The bearing has a nominal radial clearance of 95.3 μm (3.75 mils). However, measurements indicated significant bearing crush with a radial bearing clearance of 99.6 μm (3.92 mils) in the axis 45 deg counterclockwise from the loaded axis and 54.6 μm (2.15 mils) in the axis 45 deg clockwise from the loaded axis (assuming counterclockwise rotation). The pad length is 101.60 mm (4.00 in.), giving L/D=1.00. The pad arc angle is 73 deg, and the pivot offset ratio is 65%. Testing was performed using a test rig described by Kaul (1999, “Design and Development of a Test Setup for the Experimental Determination of the Rotordynamic and Leakage Characteristics of Annular Bushing Oil Seals,” MS thesis, Texas A&M University, College Station, TX), and rotordynamic coefficients were extracted using a procedure adapted from the work of Childs and Hale (1994, “A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High-Speed Hydrostatic Bearings,” ASME J. Tribol., 116, pp. 337–344). A bulk-flow Navier–Stokes model was used for predictions, using adiabatic conditions for the fluid in the bearing. However, the model assumes constant nominal clearances at all pads, and an average clearance was used based on measured clearances. Measured static eccentricities and attitude angles were significantly higher than predicted. Attitude angles varied from 6 deg to 39 deg and decreased with load. Power loss was underpredicted at low speeds and very well predicted at high speeds, with a maximum value of 25 kW (34 hp). The maximum detected pad temperature was 71°C(160°F) while the temperature increase from inlet to maximum pad temperature location was overpredicted by 10–40%. Direct stiffness and damping coefficients were significantly overpredicted, but the addition of a stiffness-in-series correction vastly improved the agreement between theory and experiment. Direct added masses were zero or negative at low speeds and increased with speed up to a maximum of about 50 kg; they were normally greater in the x (unloaded) direction. Although significant cross-coupled stiffness terms were present, they always had the same sign, and the bearing had a whirl frequency ratio of zero netting unconditional stability over all test conditions.


Sign in / Sign up

Export Citation Format

Share Document