Probabilistic Fracture Mechanics for Mature Service Frame Rotors

Author(s):  
Philipp Engels ◽  
Christian Amann ◽  
Sebastian Schmitz ◽  
Kai Kadau

Abstract Large gas turbine design and service business are challenged with increased demands towards flexible operations, increasing number of start-stop cycles and intermediate cycles. Probabilistic fracture mechanics (PFM) simulation design tools have matured and became robust and reliable. We present a probabilistic re-evaluation of Siemens E-class turbine disks by the combination of probabilistic two-dimensional axisymmetric part analysis of the disk and a novel probabilistic approach for the three-dimensional blade attachment. The first addresses the risk of inherent forging flaws, the latter combines the risk of surface crack initiation, growth and failure. Both models consider the heterogeneous nature of material properties, flaw geometries and detectability. These novel concepts developed at Siemens allow for an optimization of resource usage and safety, as well as the development of new service and inspection concepts for a variety of service frames and classes.


Author(s):  
Philipp Engels ◽  
Christian Amann ◽  
Sebastian Schmitz ◽  
Kai Kadau

Abstract Large gas turbine design and service business are challenged with increased demands towards flexible operations, increasing number of start-stop cycles and intermediate cycles. Probabilistic fracture mechanics (PFM) simulation design tools have matured and became robust and reliable. We present a probabilistic re-evaluation of Siemens E-class turbine disks by the combination of probabilistic two-dimensional axisymmetric part analysis of the disk and a novel probabilistic approach for the three-dimensional blade attachment. The first addresses the risk of inherent forging flaws, the latter combines the risk of surface crack initiation, growth and failure. Both models consider the heterogeneous nature of material properties, flaw geometries and detectability. These novel concepts developed at Siemens allow for an optimization of resource usage and safety, as well as the development of new service and inspection concepts for a variety of service frames and classes.





Author(s):  
Kazuya Osakabe ◽  
Hiroyuki Nishikawa ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Kunio Onizawa

To assess the structural integrity of reactor vessels (RVs) during pressurized thermal shock (PTS) events, a deterministic fracture mechanics (DFM) approach has been widely used such as the procedure in JEAC4206-2007. On the other hand, the application of a probabilistic fracture mechanics (PFM) analysis method for the structural reliability assessment of RV has become attractive recently because uncertainties related to input parameters can be incorporated rationally. The probabilistic approach has already been adopted as the regulation on fracture toughness requirements against PTS events in the U.S. In this paper, in order to verify the applicability of a PFM method to JEAC4206-2007, deterministic and probabilistic analyses have been performed, and the effects of initial crack size defined in JEAC4206-2007 on the temperature margin obtained from DFM and the probability of crack initiation obtained from PFM have been evaluated. With regard to the PTS event variation, a stuck open valve scenario (SO) has been considered in addition to large- and small-break loss of coolant accident (LBLOCA, SBLOCA) and main steam line break (MSLB).



Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 674
Author(s):  
Paul Caicedo ◽  
David Wood ◽  
Craig Johansen

Solar chimney power plants (SCPPs) collect air heated over a large area on the ground and exhaust it through a turbine or turbines located near the base of a tall chimney to produce renewable electricity. SCPP design in practice is likely to be specific to the site and of variable size, both of which require a purpose-built turbine. If SCPP turbines cannot be mass produced, unlike wind turbines, for example, they should be as cheap as possible to manufacture as their design changes. It is argued that a radial inflow turbine with blades made from metal sheets, or similar material, is likely to achieve this objective. This turbine type has not previously been considered for SCPPs. This article presents the design of a radial turbine to be placed hypothetically at the bottom of the Manzanares SCPP, the only large prototype to be built. Three-dimensional computational fluid dynamics (CFD) simulations were used to assess the turbine’s performance when installed in the SCPP. Multiple reference frames with the renormalization group k-ε turbulence model, and a discrete ordinates non-gray radiation model were used in the CFD simulations. Three radial turbines were designed and simulated. The largest power output was 77.7 kW at a shaft speed of 15 rpm for a solar radiation of 850 W/m2 which exceeds by more than 40 kW the original axial turbine used in Manzanares. Further, the efficiency of this turbine matches the highest efficiency of competing turbine designs in the literature.



1992 ◽  
Vol 114 (1) ◽  
pp. 79-90 ◽  
Author(s):  
O. P. Sharma ◽  
G. F. Pickett ◽  
R. H. Ni

The impacts of unsteady flow research activities on flow simulation methods used in the turbine design process are assessed. Results from experimental investigations that identify the impact of periodic unsteadiness on the time-averaged flows in turbines and results from numerical simulations obtained by using three-dimensional unsteady Computational Fluid Dynamics (CFD) codes indicate that some of the unsteady flow features can be fairly accurately predicted. Flow parameters that can be modeled with existing steady CFD codes are distinguished from those that require unsteady codes.



Sign in / Sign up

Export Citation Format

Share Document