A Deep Lifelong Learning Method for Digital-Twin Driven Defect Recognition With Novel Classes

Author(s):  
Gao Yiping ◽  
Li Xinyu ◽  
Liang Gao

Abstract Recently, digital twins (DTs) have become a research hotspot in smart manufacturing, and using DTs to assist defect recognition has also become a development trend. Real-time data collection is one of the advantages of DTs, and it can help the realization of real-time defect recognition. However, DT-driven defect recognition cannot be realized unless some bottlenecks of the recognition models, such as the time efficiency, have been solved. To improve the time efficiency, novel defect class recognition is an essential problem. Most of the existing methods can only recognize the known defect classes, which are available during training. For new incoming classes, known as novel classes, these models must be rebuilt, which is time-consuming and costly. This greatly impedes the realization of DT-driven defect recognition. To overcome this problem, this paper proposes a deep lifelong learning method for novel class recognition. The proposed method uses a two-level deep learning architecture to detect and recognize novel classes, and uses a lifelong learning strategy, weight imprinting, to upgrade the model. With these improvements, the proposed method can handle novel classes timely. The experimental results indicate that the proposed method achieves good results for the novel classes, and it has almost no delay for production. Compared with the rebuilt methods, the time cost is reduced by at least 200 times. This result suggests that the proposed method has good potential in the realization of DT-driven defect recognition.

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Jie Zhu ◽  
Weixiang Xu

In order to enhance the real-time and retrieval performance of road traffic data filling, a real-time data filling and automatic retrieval algorithm based on the deep-learning method is proposed. In image detection, the depth representation is extracted according to the detection target area of a general object. The local invariant feature is extracted to describe local attributes in the region, and it is fused with depth representation to complete the real-time data filling of road traffic. According to the results of the database enhancement, the retrieval results of the deep representation level are reordered. In the index stage, unsupervised feature updating is realized by neighborhood information to improve the performance of a feature retrieval. The experimental results show that the proposed method has high recall and precision, a short retrieval time and a low running cost.


2020 ◽  
Vol 10 (1) ◽  
pp. 776-783
Author(s):  
Riku-Pekka Nikula ◽  
Marko Paavola ◽  
Mika Ruusunen ◽  
Joni Keski-Rahkonen

AbstractDigital twins have gained a lot of attention in modern day industry, but practical challenges arise from the requirement of continuous and real-time data integration. The actual physical systems are also exposed to disturbances unknown to the real-time simulation. Therefore, adaptation is required to ensure reliable performance and to improve the usability of digital twins in monitoring and diagnostics. This study proposes a general approach to the real-time adaptation of digital twins based on a mechanism guided by evolutionary optimization. The mechanism evaluates the deviation between the measured state of the real system and the estimated state provided by the model under adaptation. The deviation is minimized by adapting the model input based on the differential evolution algorithm. To test the mechanism, the measured data were generated via simulations based on a physical model of the real system. The estimated data were generated by a surrogate model, namely a simplified version of the physical model. A case study is presented where the adaptation mechanism is applied on the digital twin of a marine thruster. Satisfactory accuracy was achieved in the optimization during continuous adaptation. However, further research is required on the algorithms and hardware to reach the real-time computation requirement.


2018 ◽  
Vol 5 (5) ◽  
pp. 3661-3671 ◽  
Author(s):  
Woongsoo Na ◽  
Yunseong Lee ◽  
Nhu-Ngoc Dao ◽  
Duc Nghia Vu ◽  
Arooj Masood ◽  
...  

2021 ◽  
Vol 15 (02) ◽  
pp. 25-31
Author(s):  
Karim Haricha ◽  
Azeddine Khiat ◽  
Yassine Issaoui ◽  
Ayoub Bahnasse ◽  
Hassan Ouajji

Production activities is generating a large amount of data in different types (i.e., text, images), that is not well exploited. This data can be translated easily to knowledge that can help to predict all the risks that can impact the business, solve problems, promote efficiency of the manufacture to the maximum, make the production more flexible and improving the quality of making smart decisions, however, implementing the Smart Manufacturing(SM) concept provides this opportunity supported by the new generation of the technologies. Internet Of Things (IoT) for more connectivity and getting data in real time, Big Data to store the huge volume of data and Deep Learning algorithms(DL) to learn from the historical and real time data to generate knowledge, that can be used, predict all the risks, problem solving, and better decision-making. In this paper, we will introduce SM and the main technologies to success the implementation, the benefits, and the challenges.


Author(s):  
Huiyue Huang ◽  
Xun Xu

Abstract Digital Twin is one of the key enabling technologies for smart manufacturing in the context of Industry 4.0. The combination with advanced data analytics and information and communication technologies allows Digital Twins to perform real-time simulation, optimization and prediction to their physical counterparts. Efficient bi-directional data exchange is the foundation for Digital Twin implementation. However, the widely mentioned cloud-based architecture has disadvantages, such as high pressure on bandwidth and long latency time, which limit Digital Twins to provide real-time operating responses in dynamic manufacturing processes. Edge computing has the characteristics of low connectivity, the capability of immediate analysis and access to temporal data for real-time analytics, which makes it a fit-for-purpose technology for Digital Twin development. In this paper, the benefits of edge computing to Digital Twin are first explained through the reviews of the two technologies. The Digital Twin functions to be performed at the edge are then elaborated. After that, how the data model will be used in the edge for data mapping to realize the Digital Twin is illustrated and the data mapping strategy based on the EXPRESS schemas is discussed. Finally, a case study is carried out to verify the data mapping strategy based on EXPRESS schema. This research work refers to ISO/DIS 23247 Automation systems and integration — Digital Twin framework for manufacturing.


2009 ◽  
Vol 14 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Ulrich W. Ebner-Priemer ◽  
Timothy J. Trull

Convergent experimental data, autobiographical studies, and investigations on daily life have all demonstrated that gathering information retrospectively is a highly dubious methodology. Retrospection is subject to multiple systematic distortions (i.e., affective valence effect, mood congruent memory effect, duration neglect; peak end rule) as it is based on (often biased) storage and recollection of memories of the original experience or the behavior that are of interest. The method of choice to circumvent these biases is the use of electronic diaries to collect self-reported symptoms, behaviors, or physiological processes in real time. Different terms have been used for this kind of methodology: ambulatory assessment, ecological momentary assessment, experience sampling method, and real-time data capture. Even though the terms differ, they have in common the use of computer-assisted methodology to assess self-reported symptoms, behaviors, or physiological processes, while the participant undergoes normal daily activities. In this review we discuss the main features and advantages of ambulatory assessment regarding clinical psychology and psychiatry: (a) the use of realtime assessment to circumvent biased recollection, (b) assessment in real life to enhance generalizability, (c) repeated assessment to investigate within person processes, (d) multimodal assessment, including psychological, physiological and behavioral data, (e) the opportunity to assess and investigate context-specific relationships, and (f) the possibility of giving feedback in real time. Using prototypic examples from the literature of clinical psychology and psychiatry, we demonstrate that ambulatory assessment can answer specific research questions better than laboratory or questionnaire studies.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

Sign in / Sign up

Export Citation Format

Share Document