scholarly journals Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control

2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Donald J. Docimo ◽  
Ziliang Kang ◽  
Kai A. James ◽  
Andrew G. Alleyne

Abstract This article explores the optimization of plant characteristics and controller parameters for electrified mobility. Electrification of mobile transportation systems, such as automobiles and aircraft, presents the ability to improve key performance metrics such as efficiency and cost. However, the strong bidirectional coupling between electrical and thermal dynamics within new components creates integration challenges, increasing component degradation, and reducing performance. Diminishing these issues requires novel plant designs and control strategies. The electrified mobility literature provides prior studies on plant and controller optimization, known as control co-design (CCD). A void within these studies is the lack of model predictive control (MPC), recognized to manage multi-domain dynamics for electrified systems, within CCD frameworks. This article addresses this through three contributions. First, a thermo-electromechanical hybrid electric vehicle (HEV) powertrain model is developed that is suitable for both plant optimization and MPC. Second, simultaneous plant and controller optimization is performed for this multi-domain system. Third, MPC is integrated within a CCD framework using the candidate HEV powertrain model. Results indicate that optimizing both the plant and MPC parameters simultaneously can reduce physical component sizes by over 60% and key performance metric errors by over 50%.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4012
Author(s):  
Milad Karimshoushtari ◽  
Carlo Novara ◽  
Fabio Tango

Interest in autonomous vehicles (AVs) has significantly increased in recent years, but despite the huge research efforts carried out in the field of intelligent transportation systems (ITSs), several technological challenges must still be addressed before AVs can be extensively deployed in any environment. In this context, one of the key technological enablers is represented by the motion-planning and control system, with the aim of guaranteeing the occupants comfort and safety. In this paper, a trajectory-planning and control algorithm is developed based on a Model Predictive Control (MPC) approach that is able to work in different road scenarios (such as urban areas and motorways). This MPC is designed considering imitation-learning from a specific dataset (from real-world overtaking maneuver data), with the aim of getting human-like behavior. The algorithm is used to generate optimal trajectories and control the vehicle dynamics. Simulations and Hardware-In-the-Loop tests are carried out to demonstrate the effectiveness and computation efficiency of the proposed approach.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3647 ◽  
Author(s):  
Chiara Bersani ◽  
Ahmed Ouammi ◽  
Roberto Sacile ◽  
Enrico Zero

Modern agriculture represents an economic sector that can mainly benefit from technology innovation according to the principles suggested by Industry 4.0 for smart farming systems. Greenhouse industry is significantly becoming more and more technological and automatized to improve the quality and efficiency of crop production. Smart greenhouses are equipped with forefront IoT- and ICT-based monitoring and control systems. New remote sensors, devices, networking communication, and control strategies can make available real-time information about crop health, soil, temperature, humidity, and other indoor parameters. Energy efficiency plays a key role in this context, as a fundamental path towards sustainability of the production. This paper is a review of the precision and sustainable agriculture approaches focusing on the current advance technological solution to monitor, track, and control greenhouse systems to enhance production in a more sustainable way. Thus, we compared and analyzed traditional versus model predictive control methods with the aim to enhance indoor microclimate condition management under an energy-saving approach. We also reviewed applications of sustainable approaches to reach nearly zero energy consumption, while achieving nearly zero water and pesticide use.


2018 ◽  
Vol 65 (5) ◽  
pp. 3954-3965 ◽  
Author(s):  
Felipe Donoso ◽  
Andres Mora ◽  
Roberto Cardenas ◽  
Alejandro Angulo ◽  
Doris Saez ◽  
...  

2018 ◽  
Vol 9 (4) ◽  
pp. 45 ◽  
Author(s):  
Nicolas Sockeel ◽  
Jian Shi ◽  
Masood Shahverdi ◽  
Michael Mazzola

Developing an efficient online predictive modeling system (PMS) is a major issue in the field of electrified vehicles as it can help reduce fuel consumption, greenhouse gasses (GHG) emission, but also the aging of power-train components, such as the battery. For this manuscript, a model predictive control (MPC) has been considered as PMS. This control design has been defined as an optimization problem that uses the projected system behaviors over a finite prediction horizon to determine the optimal control solution for the current time instant. In this manuscript, the MPC controller intents to diminish simultaneously the battery aging and the equivalent fuel consumption. The main contribution of this manuscript is to evaluate numerically the impacts of the vehicle battery model on the MPC optimal control solution when the plug hybrid electric vehicle (PHEV) is in the battery charge sustaining mode. Results show that the higher fidelity model improves the capability of accurately predicting the battery aging.


Sign in / Sign up

Export Citation Format

Share Document