Eddy Current Flow Meter Performance in Liquid Metal Flows Inclined to the Sensor Axis

Author(s):  
Nico Krauter ◽  
Vladimir Galindo ◽  
Thomas Wondrak ◽  
Sven Eckert ◽  
Gunter Gerbeth

Abstract The Eddy Current Flow Meter is a reliable and robust inductive sensor for the measurement of flowrates in liquid metal flows. This kind of sensor is usually being used in pipe flows where the flow is mostly parallel to the sensor axis. When this sensor is used as part of the safety instrumentation above the subassemblies in liquid metal cooled fast reactors, the flow angle may change rapidly according to the conditions within the reactor. In this paper we investigate the performance of the Eddy Current Flow Meter in flows inclined to the sensor axis by numerical simulations as well as model experiments. We demonstrate that the Eddy Current Flow Meter yields reliable results for flow angles up to 30° while the sensitivity of the sensor is significantly reduced for larger angles.


Author(s):  
S. Suresh Kumar ◽  
Sudheer Patri ◽  
R. K. Sharma ◽  
R. Punniamoorthy ◽  
Vishal D. Paunikar ◽  
...  


1972 ◽  
Author(s):  
J.R. Sheff ◽  
D.L. Lessor
Keyword(s):  


2013 ◽  
Vol 265 ◽  
pp. 1223-1231 ◽  
Author(s):  
S. Sureshkumar ◽  
Mohammad Sabih ◽  
S. Narmadha ◽  
N. Ravichandran ◽  
R. Dhanasekharan ◽  
...  


2020 ◽  
Author(s):  
B. Cameron ◽  
C. Unal ◽  
H. Ban ◽  
O. Anderoglu ◽  
G. Kinzler


2019 ◽  
Author(s):  
Sacit Cetiner ◽  
Kellen Oleksak ◽  
Bruce Warmack ◽  
Michael Roberts ◽  
Milton Ericson ◽  
...  


2019 ◽  
Author(s):  
S. Cetiner ◽  
A. Fathy ◽  
K. Oleksak


2020 ◽  
pp. 002199832097973
Author(s):  
Qijian Liu ◽  
Hu Sun ◽  
Yuan Chai ◽  
Jianjian Zhu ◽  
Tao Wang ◽  
...  

Bearing damage is one of the common failure modes in composite bolted joints. This paper describes the development of an on-site monitoring method based on eddy current (EC) sensing film to monitor the bearing damage in carbon fiber reinforced plastic (CFRP) single-lap bolted joints under tensile testing. Configuration design and operating principles of EC array sensing film are demonstrated. A series of numerical simulations are conducted to analyze the variation of EC when the bearing failure occurs around the bolt hole. The results of damage detection in the horizontal direction and through the thickness direction in the bolt hole with different exciting current directions are presented by the finite element method (FEM). Experiments are performed to prove the feasibility of the proposed EC array sensing film when the bearing failure occurs in CFRP single-lap bolted joints. The results of numerical simulations and experiments indicate that bearing failure can be detected according to the variation of EC in the test specimen.



Author(s):  
A. Lipchitz ◽  
Lilian Laurent ◽  
G. D. Harvel

Several Generation IV nuclear reactors, such as sodium fast reactors and lead-bismuth fast reactors, use liquid metal as a coolant. In order to better understand and improve the thermal hydraulics of liquid metal cooled GEN IV nuclear reactors liquid metal flow needs to be studied in experimental circulation loops. Experimental circulation loops are often located in a laboratory setting. However, studying liquid metal two phase flow in laboratory settings can be difficult due to the high temperatures and safety hazards involved with traditional liquid metals such as sodium and lead-bismuth. One solution is to use a low melt metal alloy that is as benign as reasonably achievable. Field’s metal is a eutectic alloy of 51% Indium, 32.5% Bismuth and 16.5% Tin by weight and has a melting point of 335K making it ideal for use in a laboratory setting. A study is undertaken to determine its suitability to use in a two-phase experimental flow loop enhanced by magnetohydrodynamic forces. The study investigated its reactivity with air and water, its ability to be influenced by magnetic fields, its ability to flow, and its ease of manufacture. The experiments melted reference samples of Field’s metal and observed its behaviour in a glass beaker, submerged in water and an inclined stainless steel pipe. Then Field’s metal was manufactured in the laboratory and compared to the sample using the same set of experiments and standards. To determine Field’s metal degree of magnetism permanent neodymium magnets were used. Their strength was determined using a Gaussmeter. All experiments were recorded using a COHU digital camera. Image analysis was then performed on the video to determine any movements initiated by the magnetic field forces. In conclusion, Field’s metal is more than suitable for use in experimental settings as it is non-reactive, non-toxic, simple to manufacture, easy to use, and responds to a magnetic force.



2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Erik Flídr ◽  
Petr Straka ◽  
Milan Kladrubský ◽  
Tomáš Jelínek

AbstractThis contribution describes experimental and numerical research of an unsteady behaviour of a flow in an end-wall region of a linear nozzle cascade. Effects of compressibility ($$M_\mathrm {2,is}$$ M 2 , is ) and inlet flow angle ($$\alpha _1$$ α 1 ) were investigated. Reynolds number ($$Re_\mathrm {2,is}$$ R e 2 , is $$=8.5\times 10^5$$ = 8.5 × 10 5 ) was held constant for all tested cases. Unsteady pressure measurement was performed at the blade mid-span in the identical position $${\mathfrak {s}}$$ s to obtain reference data. Surface flow visualizations were performed as well as the steady pressure measurement to support conclusions obtained from the unsteady measurements. Comparison of the surface Mach number distributions obtained from the experiments and from the numerical simulations are presented. Flow visualizations are then compared with calculated limiting streamlines on the blade suction surface. It was shown, that the flow structures in the end-wall region were not affected by the primary flow at the blade mid-span, even when the shock wave formed. This conclusion was made from the experimental, numerical, steady as well as unsteady points of view. Three significant frequencies in the power spectra suggested that there was a periodical interaction between the vortex structures in the end-wall region. Based on the data analyses, anisotropic turbulence was observed in the cascade.



Sign in / Sign up

Export Citation Format

Share Document