APPLICATION OF SCALE ADAPTIVE SIMULATION MODEL TO STUDYING COOLING CHARACTERISTICS OF A HIGH PRESSURE TURBINE BLADE CUTBACK TRAILING EDGE WITH DIFFERENT COOLING CONFIGURATIONS

2021 ◽  
pp. 1-53
Author(s):  
Yuefeng Li ◽  
Huazhao Xu ◽  
Jianhua Wang ◽  
Wei Song ◽  
Ming Wang ◽  
...  

Abstract This paper adopted Scale Adaptive Simulation (SAS) to investigate fluid flow and cooling characteristics in detail downstream of a high pressure turbine (HPT) blade trailing edge (TE) cutback region. The effects of typical TE configurations on cutback cooling performance are investigated including three types of internal turbulators, the cutback with/without land extensions and three kinds of ejection lip profiles. The elliptic pin fins with streamwise orientation significantly improve ηaw at the rear part of the cutback surface over the baseline model with cylindrical pin fins and slightly increase Cd. However, the elliptic pin fins with spanwise orientation drastically reduce the ηaw and Cd. Downstream of the cutback, the coherent structures are strongly disturbed and become chaotic compared to the TE with cylindrical and streamwise oriented elliptic pin fins. The application of land extensions only causes an evident change to the coherent structure immediate downstream of the lip, and slightly improves ηaw and reduces Cd over the baseline model on the rear part of the cutback surface. Rounded lip shapes B and C also show an obvious increase in ηaw on the rear part of the cutback surface but only a minor increase in Cd compared to the straight lip shape A. The rounded lip helps the coolant diffuse into the TE cutback and reduce the intensity of mixing. Due to larger rounding radius of shape B, the cooling effectiveness predicted by shape B is slightly better than shape C.

Author(s):  
Yuefeng Li ◽  
Huazhao Xu ◽  
Jianhua Wang ◽  
Wei Song ◽  
Ming Wang ◽  
...  

Abstract Effective cooling structure design in the trailing edge (TE) of a high pressure turbine (HPT) blade is essential to increase turbine efficiency and maintain structural integrity. To obtain efficient cooling structures and understand clearly cooling mechanism, this paper adopted numerical simulation methods to investigate fluid flow and cooling characteristics in detail downstream of a HPT blade TE cutback region. The effects of typical TE configurations on cutback cooling performance are investigated including three types of internal turbulators (cylindrical pin fins and elliptic pin fins arranged in streamwise and spanwise orientations), the cutback with/without land extensions and three kinds of ejection lip profiles (one straight lip shape marked as “A” and two rounded lip shapes marked as “B” and “C”, respectively). The Scale Adaptive Simulation (SAS) is implemented to study the complex unsteady mixing process downstream of the cutback under operating condition of blowing ratio M = 0.65. The results from the Shear Stress Transport (SST) k-ω model are compared as well. SAS is capable to reproduce the periodical vortex shedding phenomena and resolve the vortices coherent structures. Compared with the experimental data, SAS provides more accurate predictions in terms of laterally averaged adiabatic cooling effectiveness ηaw and discharge coefficient Cd than the SST k-ω model. On the rear part of the cutback surface, large deterioration in ηaw is predicted by SAS for all configurations, but ηaw is considerably over-predicted by the SST k-ω model except for the case of elliptic pin fins with spanwise orientation. The elliptic pin fins with streamwise orientation significantly improve ηaw at the rear part of the cutback surface over the baseline model with cylindrical pin fins and slightly increase Cd. However, the elliptic pin fins with spanwise orientation drastically reduce the ηaw and Cd. Downstream of the cutback, the coherent structures are strongly disturbed and become chaotic compared to the TE with cylindrical and streamwise oriented elliptic pin fins. The application of land extensions only causes an evident change to the coherent structure immediate downstream of the lip, and slightly improves ηaw and reduces Cd over the baseline model on the rear part of the cutback surface. Rounded lip shapes B and C also show an obvious increase in ηaw on the rear part of the cutback surface but only a minor increase in Cd compared to the straight lip shape A. The rounded lip helps the coolant diffuse into the TE cutback and reduce the intensity of mixing. Due to larger rounding radius of shape B, the cooling effectiveness predicted by shape B is slightly better than shape C.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer, and film cooling effectiveness of advanced high pressure turbine blade tips and endwalls. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with leading edge and trailing edge cutouts. Both blade tip configurations have pressure side film cooling and cooling air extraction through dust holes, which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9×105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aerothermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the midchord region. However, on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.


Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer and film cooling effectiveness of advanced high-pressure turbine blade tips and endwall. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with a leading edge and trailing edge cut-out. Both blade tip configurations have pressure side film cooling, and cooling air extraction through dust holes which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9 × 105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aero-thermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although, the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the mid-chord region. However on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hans-Ju¨rgen Rehder

As part of a European research project, the aerodynamic and thermodynamic performance of a high pressure turbine cascade with different trailing edge cooling configurations was investigated in the wind tunnel for linear cascades at DLR in Go¨ttingen. A transonic rotor profile with a relative thick trailing edge was chosen for the experiments. Three trailing edge cooling configurations were applied, first central trailing edge ejection, second a trailing edge shape with a pressure side cut-back and slot equipped with a diffuser rib array, and third pressure side film cooling through a row of cylindrical holes. For comparison, aerodynamic investigations on a reference cascade with solid blades (no cooling holes or slots) were performed. The experiments covered the subsonic, transonic and supersonic exit Mach number range of the cascade while varying cooling mass flow ratios up to 2 %. This paper analyzes the effect of coolant ejection on the airfoil losses. Emphasis was given on separating the different loss contributions due to shocks, pressure, and suction side boundary layer, trailing edge, and mixing of the coolant flow. Employed measurement techniques are schlieren visualization, blade surface pressure measurements, and traverses by pneumatic probes in the cascade exit flow field and around the trailing edge. The results show that central trailing edge ejection significantly reduces the mixing losses and therefore decreases the overall loss. Higher loss levels are obtained when applying the configurations with pressure side blowing. In particular, the cut-back geometry reveals strong mixing losses due to the low momentum coolant fluid, which is decelerated by the diffuser rib array inside the slot. The influence of coolant flow rate on the trailing edge loss is tremendous, too. Shock and boundary layer losses are major contributions to the overall loss but are less affected by the coolant. Finally a parameter variation changing the temperature ratio of coolant to main flow was performed, resulting in increasing losses with decreasing coolant temperature.


2020 ◽  
Author(s):  
Jan Kamenik ◽  
David J. Toal ◽  
Andy Keane ◽  
Lars Högner ◽  
Marcus Meyer ◽  
...  

Author(s):  
Weilong Wu ◽  
Huazhao Xu ◽  
Jianhua Wang ◽  
Xiangyu Wu ◽  
Lei Wang

Abstract This paper numerically investigated the influences of pin-fin size and layout on the flow characteristics of cooling air in the trailing edge of a real low pressure turbine blade. The discussion was given first for the baseline model without pin fins (denoted as M0) under a turbine design condition and two off design conditions. Then a comparison of the flow fields in the turbine blade especially in the trailing edge region was performed with three more trailing edge models, with the purpose of discovering the benefits of using pin fin configurations in a real low pressure turbine blade. The other three models (denoted as M1, M2, M3) have pin fins in different diameters and arrangements. The M1 model has a row of 13 pin fins with a diameter of 2mm, and the M2 and M3 models have two rows of pin fins arranged in a staggered pattern with a diameter of 1.2mm. Compared to the baseline model M0, it is shown that an addition of pin fin configurations helps greatly to improve cooling flow distributions and to mitigate the blockage of coolant in trailing slots. Meanwhile, the adoption of pin fins has not only affected significantly the flow field in the trailing passage but also has moderately affected flow fields in the middle and forward cooling passages. Increasing pressure ratio can increase total mass flow rate with no significant change in flow patterns. The baseline blade Model M0 shows a high value of 6 for a friction loss related performance function at the turbine design condition. However, only a moderate increase in the value of the performance function is discovered for all the three blades with pin fins.


Sign in / Sign up

Export Citation Format

Share Document