UNCERTAINTY EVALUATION ON MULTI-HOLE AERODYNAMIC PRESSURE PROBES

2021 ◽  
pp. 1-31
Author(s):  
Andrea Notaristefano ◽  
Paolo Gaetani ◽  
Vincenzo Dossena ◽  
Alberto Fusetti

Abstract In the frame of a continuous improvement of the performance and accuracy in the experimental testing of turbomachines, the uncertainty analysis on measurements instrumentation and techniques is of paramount importance. For this reason, since the beginning of the experimental activities at the Laboratory of Fluid Machines (LFM) located at Politecnico di Milano (Italy), this issue has been addressed and different methodologies have been applied. This paper proposes a comparison of the results collected applying two methods for the measurement uncertainty quantification to two different aerodynamic pressure probes: sensor calibration, aerodynamic calibration and probe application are considered. The first uncertainty evaluation method is the so called “Uncertainty Propagation” method (UPM); the second is based on the “Monte Carlo” method (MCM). Two miniaturized pressure probes have been selected for this investigation: a pneumatic 5-hole probe and a spherical fast response aerodynamic pressure probe (sFRAPP), the latter applied as a virtual 4-hole probe. Since the sFRAPP is equipped with two miniaturized pressure transducers installed inside the probe head, a specific calibration procedure and a dedicated uncertainty analysis are required.

Author(s):  
Andrea Notaristefano ◽  
Paolo Gaetani ◽  
Vincenzo Dossena ◽  
Alberto Fusetti

Abstract In the frame of a continuous improvement of the performance and accuracy in the experimental testing of turbomachines, the uncertainty analysis on measurements instrumentation and techniques is of paramount importance. For this reason, since the beginning of the experimental activities at the Laboratory of Fluid Machines (LFM) located at Politecnico di Milano (Italy), this issue has been addressed and different methodologies have been applied. This paper proposes a comparison of the results collected applying two methods for the measurement uncertainty quantification to two different aerodynamic pressure probes: sensor calibration, aerodynamic calibration and probe application are considered. The first uncertainty evaluation method is the so called “Uncertainty Propagation” method (UPM); the second is based on the “Monte Carlo” method (MCM). Two miniaturized pressure probes have been selected for this investigation: a pneumatic 5-hole probe and a spherical fast response aerodynamic pressure probe (sFRAPP), the latter applied as a virtual 4-hole probe. Since the sFRAPP is equipped with two miniaturized pressure transducers installed inside the probe head, a specific calibration procedure and a dedicated uncertainty analysis are required.


Author(s):  
Paolo Gaetani ◽  
Giacomo Persico

This paper presents and discusses the recent developments on the Fast-Response Aerodynamic Pressure Probe (FRAPP) technology at the Laboratorio di Fluidodinamica delle Macchine (LFM) of the Politecnico di Milano. First, the different geometries developed and tested at LFM are presented and critically discussed: the paper refers to single-sensor or two-sensor probes applied as virtual 2D or 3D probes for phase-resolved measurements. The static calibration of the sensors inserted inside the head of the probes is discussed, also taking into account for the temperature field of application: in this context, a novel calibration procedure is discussed and the new manufacturing process is presented. The dynamic calibration is reconsidered in view of the 15-years’ experience, including the extension to probes operating at different temperature and pressure levels with respect to calibration. As for the probe aerodynamics, the calibration coefficients are discussed and the most reliable set here is evidenced. A novel procedure for the quantification of the measurement uncertainty, recently developed and based on the Montecarlo methodology, is introduced and discussed in the paper.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Florian M. Heckmeier ◽  
Stefan Hayböck ◽  
Christian Breitsamter

Abstract The spatial and temporal resolution of a fast-response aerodynamic pressure probe (FRAP) is investigated in a benchmark flow of grid-generated turbulence. A grid with a mesh size of $$M=6.4$$ M = 6.4 mm is tested for two different free-stream velocities, hence, resulting in Reynolds numbers of $$Re_M= \{4300,12800\}$$ R e M = { 4300 , 12800 } . A thorough analysis of the applicability of the underlying assumptions with regard to turbulence isotropy and homogeneity is carried out. Taylor’s frozen turbulence hypothesis is assumed for the calculation of deducible flow quantities, like the turbulent kinetic energy or the dissipation rate. Furthermore, besides the examination of statistical quantities, velocity spectra of measurements downstream of the grid are quantified. Results of a small fast-response five-hole pressure probe equipped with piezo-resistive differential pressure sensors are compared to single-wire hot-wire constant temperature anemometry data for two different wire lengths. Estimates of temporal and spatial turbulent scales (e.g., Taylor micro scale and Kolmogorov length scale) show good agreement to data in the literature but are affected by filtering effects. Especially in the energy spectra, very high bandwidth content cannot be resolved by the FRAP, which is mainly due to bandwidth limits in the temporal calibration of the FRAP and the minimal resolution of the integrated sensors. Graphic abstract


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
O. Schennach ◽  
J. Woisetschläger ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani

This paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three-dimensional aerodynamics of the second vane for different clocking positions. To give an overview of the time-averaged flow field, five-hole probe measurements were performed upstream and downstream of the second stator. Furthermore in these planes additional unsteady measurements were carried out with laser Doppler velocimetry in order to record rotor phase-resolved velocity, flow angle, and turbulence distributions at two different clocking positions. In the planes upstream of the second vane, the time-resolved pressure field has been measured by means of a fast response aerodynamic pressure probe. This paper shows that the secondary flows of the second vane are significantly modified by the different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out, and a 0.6% variation in the second vane loss coefficient has been recorded among the different clocking positions.


Author(s):  
O. Schennach ◽  
J. Woisetschla¨ger ◽  
A. Fuchs ◽  
E. Go¨ttlich ◽  
A. Marn ◽  
...  

The current paper presents experimental clocking investigations of the flow field in midspan in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine). Laser-Doppler-Velocimetry measurements were carried out in order to record rotor phase resolved velocity, flow angle and turbulence distributions upstream and downstream of the second vane row at several different vane-vane positions. Additionally, a fast response aerodynamic pressure probe was used to get the total pressure distribution downstream of the second vane row for the same positions. Altogether, the measurements were performed for ten different 1st vane to 2nd vane positions (clocking positions) for measurements downstream of the 2nd vane row and two different clocking positions for measurements upstream of the 2nd vane row. The paper shows that different clocking positions have a significant influence on the flow field downstream of the 2nd vane row. Furthermore different measurement lines upstream of the 2nd vane row indicate that clocking has nearly no influence on the flow field close to the rotor exit.


Author(s):  
O. Schennach ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani ◽  
J. Woisetschla¨ger

The paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three dimensional flow field downstream of the high pressure turbine for different vane clocking positions. To give an overview of the time averaged flow field, measurements by means of a pneumatic five hole probe were performed upstream and downstream of the second stator. Furthermore in this planes additional unsteady measurements were carried out with Laser Doppler Velocimetry in order to record rotor phase resolved velocity, flow angle and turbulence distributions at two different clocking positions. In the measurement plane upstream the second vane the time resolved pressure field has been analyzed by means of a Fast Response Aerodynamic Pressure Probe. The paper shows that the secondary flows of the second vane are significantly modified for different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4472 ◽  
Author(s):  
Mingotti ◽  
Peretto ◽  
Tinarelli ◽  
Ghaderi

The paper addresses the evaluation of the uncertainty sources of a test bed system for calibrating voltage transformers vs. temperature. In particular, the Monte Carlo method has been applied in order to evaluate the effects of the uncertainty sources in two different conditions: by using the nominal accuracy specifications of the elements which compose the setup, or by exploiting the results of their metrological characterization. In addition, the influence of random effects on the system accuracy has been quantified and evaluated. From the results, it emerges that the choice of the uncertainty evaluation method affects the overall study. As a matter of fact, the use of a metrological characterization or of accuracy specifications provided by the manufacturers provides respectively an accuracy of 0.1 and 0.5 for the overall measurement setup.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Sabine Bauinger ◽  
Stephan Behre ◽  
Davide Lengani ◽  
Yavuz Guendogdu ◽  
Franz Heitmeir ◽  
...  

Since the experiment in turbulence research is of very high importance for evaluating turbulence hypothesis, turbulence measurements were carried out in a two-stage two-spool transonic turbine test rig at the Institute for Thermal Turbomachinery and Machine Dynamics in Graz in which the two rotors are counter-rotating with two different rotational speeds. For the current measurement campaign, triple hot-wire probes, which represent a very new measurement technique in this test rig, were used and their results validated with a fast response aerodynamic pressure probe (FRAPP). Based on the data measured with this device, turbulence intensities may be determined using a method called Fourier filtering. If the classical ensemble averaging procedure with only one trigger is applied, the periodic fluctuations of the other rotor will artificially increase the stochastic fluctuations. Therefore, the two trigger signals of the two rotors require a special analysis method, which was established at Graz University of Technology. The results from this method will be compared to the classical triple decomposition, which uses only one trigger signal. With this analysis tool, it is not only possible to evaluate unsteady signals triggered by one of the two rotors, but also the unsteady interactions of the rotors can be determined and investigated.


Author(s):  
Sabine Bauinger ◽  
Stephan Behre ◽  
Davide Lengani ◽  
Yavuz Guendogdu ◽  
Franz Heitmeir ◽  
...  

Since the experiment in turbulence research is of very high importance for evaluating turbulence hypothesis, turbulence measurements were carried out in a two-stage two-spool transonic turbine test rig at the Institute for Thermal Turbomachinery and Machine Dynamics in Graz in which the two rotors are counter-rotating with two different rotational speeds. For the current measurement campaign, triple hot-wire probes, which represent a very new measurement technique in this test rig, were used and their results validated with a fast response aerodynamic pressure probe. Based on the data measured with this device, turbulence intensities may be determined using a method developed by Persico et al. [1]. If the classical ensemble averaging procedure with only one trigger is applied, the periodic fluctuations of the other rotor will artificially increase the stochastic fluctuations. Therefore, the two trigger signals of the two rotors require a special analysis method, which was established at Graz University of Technology by Lengani et al. The results from this method will be compared to the classical triple decomposition, which uses only one trigger signal. With this analysis tool, it is not only possible to evaluate unsteady signals triggered by one of the two rotors but also the unsteady interactions of the rotors can be determined and investigated.


Author(s):  
G. Persico ◽  
A. Mora ◽  
P. Gaetani ◽  
M. Savini

In this paper the three-dimensional unsteady aerodynamics of a low aspect ratio, high pressure turbine stage is studied. Fully unsteady, three-dimensional numerical simulations are performed using the commercial code ANSYS-CFX The numerical model is critically evaluated against experimental data. Measurements were performed with a three-dimensional fast-response aerodynamic pressure probe in the closed-loop test rig operating in the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano (Italy). An analysis is first reported about the strategy to reduce the CPU and memory requirements while performing three-dimensional simulations of stator-rotor interaction in actual turbomachinery. What emerges as the best choice, at least for subsonic stages, is to simulate the unsteady behaviour of the rotor blade row alone by applying the stator outlet flow field as rotating inlet boundary condition. When measurements are available upstream of the rotor the best representation of the experimental results downstream of the stage is achieved. The agreement with the experiments achieved at the rotor exit makes the CFD simulation a key-tool for the comprehension and the interpretation of the physical mechanisms acting inside the rotor channel (often difficult to achieve using experiments only). Numerical investigations have been carried out by varying the incidence at the vane entrance. Different vane incidence angles lead to different size, position, and strength of secondary vortices coming out from the stator. The configuration is chosen is such a way to isolate the effects of the vortex-blade interaction. Results show that some general trends can be recognized in the vortex-blade interaction. The sense of rotation and the spanwise position of the incoming vortices play a crucial role on their interaction with the rotor vortices, thus determining both the time-mean and the time-resolved characteristics of the stage-exit secondary field.


Sign in / Sign up

Export Citation Format

Share Document