MXene Nanoflakes Confined in Multichannel Carbon Nanofibers as Electrocatalysts for Lithium–Sulfur Batteries

Author(s):  
Yaxi Tian ◽  
Huawen Huang ◽  
Chen Chen ◽  
Yuanfu Deng ◽  
Lei Zhang

Abstract Lithium–sulfur (Li–S) batteries have been research hotspots because of their significant advantages in high-energy density and low cost. However, the notorious shuttle effect results in poor electrochemical performance, which is a serious obstacle for their practical application. The delicate design of sulfur hosts is a very important strategy to suppress the shuttle effect. Herein, MXene nanoflakes confined within multichannel carbon nanofibers (MXene@MCNF) have been successfully synthesized as robust electrocatalysts for Li–S batteries based on a simple electrospun method followed by a carbonization process. This unique structure effectively prevents the restacking of MXene nanoflakes, which is conducive to improve the electrocatalytic activity of MXene for propelling the redox reaction of polysulfides owing to the abundant exposure of surface active sites. Moreover, the multichannel hollow structure can inhibit the outward dissolution of polysulfides via the physical confinement caused by their abundant pore structures and alleviate the huge volume change of sulfur cathode. Benefiting from these aforementioned advantages, MXene@MCNF-sulfur (MXene@MCNF-S) cathode delivers a high capacity of 1177 mA h/g at 0.2 C and excellent cycling stability after 200 cycles at 2.0 C.

Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


2018 ◽  
Vol 6 (17) ◽  
pp. 7375-7381 ◽  
Author(s):  
Zhibin Cheng ◽  
Hui Pan ◽  
Zhubing Xiao ◽  
Dejian Chen ◽  
Xiaoju Li ◽  
...  

A new lithium polysulfide (PS) trapping strategy based on electrostatic attraction between imidazolium groups and PSs has been demonstrated. Simple introduction of main-chain imidazolium-based ionic polymers into sulfur cathodes results in effective suppression of the PS shuttle effect, thus significantly improving cycling stability of lithium–sulfur batteries.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2025-2032
Author(s):  
Fan Zhang ◽  
Yunlei Zhou ◽  
Yi Zhang ◽  
Dongchan Li ◽  
Zhichao Huang

AbstractThe design of sulfur hosts with polar, sulfurphilic, and conductive network is critical to lithium-sulfur (Li-S) batteries whose potential applications are greatly limited by the lithium polysulfide shuttle effect. Mxenes, possessing layered-stacked structures and high electrical conductivities, have a great potential in sulfur hosts. Herein, sulfur nanoparticles uniformly decorated on titanium carbide Mxene (S@Ti3C2Tx Mxene) are synthesized via a hydrothermal method and then utilized as a cathode for lithium-sulfur batteries. This unique architecture could accommodate sulfur nanoparticles expansion during cycling, suppress the shuttling of lithium polysulfide, and enhance electronical conductivity. Consequently, the S@Mxene with a high areal sulfur loading (∼4.0 mg cm−2) exhibits a high capacity (1477.2 mAh g−1) and a low capacity loss per cycle of 0.18% after 100 cycles at 0.2 C. This work may shed lights on the development of high performance sulfur-based cathode materials for Li-S batteries.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Zhan ◽  
Andrea Buffa ◽  
Linghui Yu ◽  
Zhichuan J. Xu ◽  
Daniel Mandler

Abstract Lithium–sulfur batteries (LSBs) are considered as the next generation of advanced rechargeable batteries because of their high energy density. In this study, sulfur and CoxS electrocatalyst are deposited on carbon nanotube buckypaper (S/CoxS/BP) by a facile electrodeposition method and are used as a binder-free high-performance cathode for LSBs. Elemental sulfur is deposited on buckypaper by electrooxidation of a polysulfide solution (~ S62−). This approach substantially increased the current and time efficiency of sulfur electrochemical deposition on conductive material for LSBs. S/CoxS/BP cathode could deliver an initial discharge capacity as high as 1650 mAh g−1 at 0.1 C, which is close to the theoretical capacity of sulfur. At current rate of 0.5 C, the S/CoxS/BP has a capacity of 1420 mAh g−1 at the first cycle and 715 mAh g−1 after 500 cycles with a fading rate of 0.099% per cycle. The high capacity of S/CoxS/BP is attributed to both the homogeneous dispersion of nanosized sulfur within BP and the presence of CoxS catalyst. The sodium dodecyl sulfate (SDS) pretreatment of BP renders it polarity to bind polysulfides and thus facilitates the good dispersibility of nanosized sulfur within BP. CoxS catalyst accelerates the kinetics of polysulfide conversion and reduces the presence of polysulfide in the cathode, which suppresses the polysulfide diffusion to anode, i.e., the shuttle effect. The mitigation of the active material loss improves not only the capacity but also the cyclability of S/CoxS/BP. Graphic Abstract


2021 ◽  
Vol 9 ◽  
Author(s):  
Yangyang Dong ◽  
Tingting Li ◽  
Dong Cai ◽  
Shuo Yang ◽  
Xuemei Zhou ◽  
...  

Lithium−sulfur (Li−S) batteries featured by ultra-high energy density and cost-efficiency are considered the most promising candidate for the next-generation energy storage system. However, their pragmatic applications confront several non-negligible drawbacks that mainly originate from the reaction and transformation of sulfur intermediates. Grasping and catalyzing these sulfur species motivated the research topics in this field. In this regard, carbon dopants with metal/metal-free atoms together with transition–metal complex, as traditional lithium polysulfide (LiPS) propellers, exhibited significant electrochemical performance promotions. Nevertheless, only the surface atoms of these host-accelerators can possibly be used as active sites. In sharp contrast, organic materials with a tunable structure and composition can be dispersed as individual molecules on the surface of substrates that may be more efficient electrocatalysts. The well-defined molecular structures also contribute to elucidate the involved surface-binding mechanisms. Inspired by these perceptions, organic electrocatalysts have achieved a great progress in recent decades. This review focuses on the organic electrocatalysts used in each part of Li−S batteries and discusses the structure–activity relationship between the introduced organic molecules and LiPSs. Ultimately, the future developments and prospects of organic electrocatalysts in Li−S batteries are also discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cheng Liu ◽  
Meng Xiang ◽  
Haiyang Zhang ◽  
Shuaiqiang Feng ◽  
Jianrong Xiao ◽  
...  

Lithium–sulfur battery hasreceived widespread attention because of its high energy density, low cost, environmental friendliness, and nontoxicity. However, the insulating properties of elemental sulfur, huge volume changes, and dissolution of polysulfides in electrolytes that result in the shuttle effect, low sulfur utilization, and low rate performance seriously hinder the commercialization of lithium–sulfur batteries. In this work, a composite material of nitrogen-doped multiwalled carbon nanotubes and V2O5 was designed and fabricated to serve as the positive electrode of lithium–sulfur battery via the hydrothermal method. The positive electrode of the V2O5@N-CNTs composite material could reach an initial discharge specific capacity of 1,453 mAh g−1at a rate of 0.1C. Moreover, the composite material could maintain a discharge ratio of 538 mAh g−1 at a rate of 0.5C even after 200 charge and discharge cycles. After 400 cycles, the composite had a specific discharge capacity of 439 mAh g−1 at a rate of 1.0C. The excellent electrochemical performance of the V2O5@N-CNT/S composite cathode material was due to the fact that V2O5 contains oxygen ions and has a strong polarized surface. Furthermore, nitrogen doping changed the hybrid structure of carbon atoms and provided additional active sites, thereby improving the conductivity of the material itself and effectively inhibiting the dissolution and diffusion of polysulfides.


2017 ◽  
Vol 5 (34) ◽  
pp. 18020-18028 ◽  
Author(s):  
Mingwu Xiang ◽  
Li Yang ◽  
Yifeng Zheng ◽  
Ju Huang ◽  
Peng Jing ◽  
...  

Lithium–sulfur batteries have been considered to be the most promising candidate for next-generation chemical energy-storage technologies due to their high energy density and low cost.


Author(s):  
Masayoshi Watanabe ◽  
Jiali Liu ◽  
Shanglin Li ◽  
Mayeesha Marium ◽  
Binshen Wang ◽  
...  

The lithium–sulfur (Li–S) battery is considered one of the most promising technologies for next-generation energy storage. To realise its practical applications, electrodes with high areal sulfur loading, low-cost raw materials,...


Sign in / Sign up

Export Citation Format

Share Document