scholarly journals Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Zhan ◽  
Andrea Buffa ◽  
Linghui Yu ◽  
Zhichuan J. Xu ◽  
Daniel Mandler

Abstract Lithium–sulfur batteries (LSBs) are considered as the next generation of advanced rechargeable batteries because of their high energy density. In this study, sulfur and CoxS electrocatalyst are deposited on carbon nanotube buckypaper (S/CoxS/BP) by a facile electrodeposition method and are used as a binder-free high-performance cathode for LSBs. Elemental sulfur is deposited on buckypaper by electrooxidation of a polysulfide solution (~ S62−). This approach substantially increased the current and time efficiency of sulfur electrochemical deposition on conductive material for LSBs. S/CoxS/BP cathode could deliver an initial discharge capacity as high as 1650 mAh g−1 at 0.1 C, which is close to the theoretical capacity of sulfur. At current rate of 0.5 C, the S/CoxS/BP has a capacity of 1420 mAh g−1 at the first cycle and 715 mAh g−1 after 500 cycles with a fading rate of 0.099% per cycle. The high capacity of S/CoxS/BP is attributed to both the homogeneous dispersion of nanosized sulfur within BP and the presence of CoxS catalyst. The sodium dodecyl sulfate (SDS) pretreatment of BP renders it polarity to bind polysulfides and thus facilitates the good dispersibility of nanosized sulfur within BP. CoxS catalyst accelerates the kinetics of polysulfide conversion and reduces the presence of polysulfide in the cathode, which suppresses the polysulfide diffusion to anode, i.e., the shuttle effect. The mitigation of the active material loss improves not only the capacity but also the cyclability of S/CoxS/BP. Graphic Abstract

2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


2021 ◽  
Vol 22 (20) ◽  
pp. 11041
Author(s):  
Yajing Yan ◽  
Yanxu Chen ◽  
Yongyan Li ◽  
Xiaoyu Wu ◽  
Chao Jin ◽  
...  

By virtue of the high theoretical capacity of Si, Si-related materials have been developed as promising anode candidates for high-energy-density batteries. During repeated charge/discharge cycling, however, severe volumetric variation induces the pulverization and peeling of active components, causing rapid capacity decay and even development stagnation in high-capacity batteries. In this study, the Si/Fe2O3-anchored rGO framework was prepared by introducing ball milling into a melt spinning and dealloying process. As the Li-ion battery (LIB) anode, it presents a high reversible capacity of 1744.5 mAh g−1 at 200 mA g−1 after 200 cycles and 889.4 mAh g−1 at 5 A g−1 after 500 cycles. The outstanding electrochemical performance is due to the three-dimensional cross-linked porous framework with a high specific surface area, which is helpful to the transmission of ions and electrons. Moreover, with the cooperation of rGO, the volume expansion of Si is effectively alleviated, thus improving cycling stability. The work provides insights for the design and preparation of Si-based materials for high-performance LIB applications.


MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3501-3506 ◽  
Author(s):  
Gaind P. Pandey ◽  
Joshua Adkins ◽  
Lamartine Meda

ABSTRACTLithium sulfide (Li2S) is one of the most attractive cathode materials for high energy density lithium batteries as it has a high theoretical capacity of 1166 mA h g-1. However, Li2S suffers from poor rate performance and short cycle life due to its insulating nature and polysulfide shuttle during cycling. In this work, we report a facile and viable approach to address these issues. We propose a method to synthesize a Li2S based nanocomposite cathode material by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and graphene oxide (GO) as a matrix to enhance the conductivity, followed by a co-precipitation and high-temperature carbonization process. The Li2S/rGO cathode yields an exceptionally high initial capacity of 817 mAh g-1 based on Li2S mass at C/20 rate and also shows a good cycling performance. The carbon-coated Li2S/rGO cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing carbon coated Li2S/rGO composites as an outstanding system for high-performance lithium-sulfur batteries.


2016 ◽  
Vol 879 ◽  
pp. 2150-2152
Author(s):  
Shunsuke Yagi ◽  
Masaaki Fukuda ◽  
Tetsu Ichitsubo ◽  
Eiichiro Matsubara

Rechargeable Mg batteries have received intensive attention as affordable rechargeable batteries with high electromotive force, high energy density, and high safety. Mg possesses two valence electrons and has the lowest standard electrode potential (ca. -2.36 V vs. SHE) among the air-stable metals. There is another advantage that Mg metal can be used as an active material because Mg metal hardly forms dendrites. However, the slow diffusion of Mg ions in solid crystals prevents the realization of active materials for Mg rechargeable batteries at room temperature. Although some complex oxides have been reported to work as active materials at higher temperatures, Chevrel compounds are still the gold standards, which work at room temperature. However, the working voltage of the Mg battery using a Chevrel compound for the cathode is only ca. 1.2 V, which is far below that of Li-ion batteries (3-5 V). Nevertheless, Chevrel compounds have the significant advantage that a relatively large space exists in the crystal structure, which allows for fast Mg ion diffusion. In the present study, we investigated some materials with framework structures as cathodes for Mg batteries, which can alleviate the electrostatic constraint between Mg ions and cathode constituents. Specifically, we investigated the redox behavior of the thin films of Prussian blue and Prussian blue analogues in electrolytes containing an Mg salt using electrochemical quartz crystal microbalance and X-ray absorption spectroscopy. In addition, we discuss the electrochemical insertion/extraction behavior of Mg ions and their solvation structures.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2021 ◽  
Vol 236 ◽  
pp. 01016
Author(s):  
Congcong Huang ◽  
Yunhui Dong ◽  
Xingjun Dong

A facile route has been employed to synthesize a series of high performance activated carbons as the electrode material for supercapacitors. The structure of the carbons are characterized by N2 adsorption/desorption and FTIR spectroscopy. The electrochemical performances of the carbons as an electrode material were evaluated by cyclic voltammetry test and galvanostatic charge/discharge measurements. As a biomass derived carbon, KOH-1 exhibits high capacity, good rate capability and high energy density, indicating the promising application of hydrothermal combining with KOH activation method for biomass materials that used in supercapacitors


2021 ◽  
Vol 14 (2) ◽  
pp. 890-899
Author(s):  
Hunter O. Ford ◽  
Emily S. Doyle ◽  
Peng He ◽  
William C. Boggess ◽  
Allen G. Oliver ◽  
...  

The magnesium–sulfur battery holds great promise for energy storage due to its high energy density and low cost of materials. Unfortunately, current Mg–S electrolytes are found to enable severe self-discharge, leading to poor battery shelf-life.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chengwei Lu ◽  
Ruyi Fang ◽  
Kun Wang ◽  
Zhen Xiao ◽  
G. Gnana kumar ◽  
...  

Selenium-sulfur solid solutions (Se1-xSx) are considered to be a new class of promising cathodic materials for high-performance rechargeable lithium batteries owing to their superior electric conductivity than S and higher theoretical specific capacity than Se. In this work, high-performance Li-Se1-xSx batteries employed freestanding cathodes by encapsulating Se1-xSx in a N-doped carbon framework with three-dimensional (3D) interconnected porous structure (NC@SWCNTs) are proposed. Se1-xSx is uniformly dispersed in 3D porous carbon matrix with the assistance of supercritical CO2 (SC-CO2) technique. Impressively, NC@SWCNTs host not only provides spatial confinement for Se1-xSx and efficient physical/chemical adsorption of intermediates, but also offers a highly conductive framework to facilitate ion/electron transport. More importantly, the Se/S ratio of Se1-xSx plays an important role on the electrochemical performance of Li- Se1-xSx batteries. Benefiting from the rationally designed structure and chemical composition, NC@[email protected] cathode exhibits excellent cyclic stability (632 mA h g−1 at 200 cycle at 0.2 A g−1) and superior rate capability (415 mA h g−1 at 2.0 A g−1) in carbonate-based electrolyte. This novel NC@[email protected] cathode not only introduces a new strategy to design high-performance cathodes, but also provides a new approach to fabricate freestanding cathodes towards practical applications of high-energy-density rechargeable batteries.


2019 ◽  
Vol 4 (2) ◽  
pp. 105
Author(s):  
Soraya Ulfa Muzayanha ◽  
Cornelius Satria Yudha ◽  
Luthfi Mufidatul Hasanah ◽  
Adrian Nur ◽  
Agus Purwanto

<p>The use of Li-ion batteries has increased with the increasing of portable electronic media. Li-ion batteries have a life cycle hence a recycling process is needed in order to reduce the potential hazard of waste while increasing the economic value of unused battery material, especially its cathode active material. This study used Lithium Nickel Cobalt Oxide (NCA) cathode scrap to be regenerated which NCA material has high energy density and high capacity. The pretreatment process is one of the determinants in the subsequent recycling process. In this study, the effect of heating on the pretreatment process was carried out with variation temperatures of 500-800<sup>0</sup>C to obtain powder which will be recycled. The combination process of the leaching and co-precipitation was used to regenerate the cathode active material. Atomic Absorption Spectrophotometry (AAS) was performed to determine leaching efficiency using 4M H<sub>2</sub>SO<sub>4</sub> at 40<sup>0</sup>C for 3 hours. X-ray Diffraction (XRD) analysis showed that NCA material has been successfully regenerated which the diffraction peaks of NCA material was in accordance with JCPDS standards. The morphology of NCA material was tested using Scanning Electron Microscopy (SEM). Electrochemical testing uses a cylindrical battery at 2.7-4.2 Volt which the initial specific discharge capacity of the power is 62.13 mAh / g.</p>


Sign in / Sign up

Export Citation Format

Share Document