Sources of Error When Measuring Achilles Tendon Mechanics During the Stance Phase of Running

Author(s):  
Giorgos Krikelis ◽  
Matthew T.G. Pain ◽  
Laura-Anne M. Furlong

Abstract In recent years, the use of methods that combine motion capture with ultrasound (MoCapUs) has increased. Although several limitations and individual errors of these methods have been reported, the total error from all the potential sources together has not been estimated. The aim of this study was to establish the total error in the Achilles tendon (AT) measurements, specifically its length (ATL), strain (ATS) and moment arm (ATMA) acquired with MoCapUs during running. The total error from digitising, marker movement, ultrasound calibration and probe rotation errors caused mean ATL error of 4.2 ± 0.6 mm, mean ATMA error of 0.1 ± 0.1 mm, and could potentially alter measured ATS by a mean 2.9 ± 0.2 %. Correcting the calcaneus insertion position (CIP) and properly synchronising ultrasound and motion capture data combined caused ATL and ATMA changes up to 5.4 ± 1.7 mm and 11.6 ± 1.3 mm, respectively. Changes in ATL and ATS due to the CIP correction and synchronisation individually were similar. However, the ATMA change was almost exclusively due to the CIP correction. Finally, if all sources of error were combined, the total ATL error could reach 13.1 mm, the total ATMA error could reach 14.4 mm, and ATS differences could reach up to ± 6.7%. The magnitude such errors emphasises the fact that MoCapUS based AT measurements must be interpreted within the scope of their corresponding errors.

Author(s):  
Justin D. Cowder ◽  
Thomas S. Buchanan ◽  
Kurt T. Manal

Accurate estimates for Achilles tendon moment arm (MA) are essential when computing gastroc-soleus force from the net plantarflexion moment. Errors in approximating the Achilles tendon MA will adversely affect the muscle force estimate. We have noted that Achilles tendon MAs reported by Maganaris [1] and others are significantly greater (> 1 cm) than values used by Delp et al. computed using SIMM [2]. It is important to note that the stature of Delp’s lower limb model was almost identical to the average weight and height of the subjects in a study by Maganaris. This led us to question which MA profiles were more anatomically meaningful. To address this, we calculated Achilles tendon MAs for 10 male subjects using a previously described method. The method combines ultrasound and video-based motion capture, and referred to as the hybrid method. Subjects in our study were chosen to ensure they were of a similar stature to those tested by Maganaris, thereby minimizing confounding effects of subject anthropometrics.


2010 ◽  
Vol 26 (2) ◽  
pp. 224-228 ◽  
Author(s):  
Kurt Manal ◽  
Justin D. Cowder ◽  
Thomas S. Buchanan

In this article, we outline a method for computing Achilles tendon moment arm. The moment arm is computed from data collected using two reliable measurement instruments: ultrasound and video-based motion capture. Ultrasound is used to measure the perpendicular distance from the surface of the skin to the midline of the tendon. Motion capture is used to determine the perpendicular distance from the bottom of the probe to the ankle joint center. The difference between these two measures is the Achilles tendon moment arm. Unlike other methods, which require an angular change in joint position to approximate the moment arm, the hybrid method can be used to compute the moment arm directly at a specific joint angle. As a result, the hybrid method involves fewer error-prone measurements and the moment arm can be computed at the limits of the joint range of motion. The method is easy to implement and uses modalities that are less costly and more accessible than MRI. Preliminary testing using a lamb shank as a surrogate for a human ankle revealed good accuracy (3.3% error). We believe the hybrid method outlined here can be used to measure subject-specific moment arms in vivo and thus will potentially benefit research projects investigating ankle mechanics.


Author(s):  
Justin D. Cowder ◽  
Nicole J. Chimera ◽  
Thomas S. Buchanan ◽  
Kurt T. Manal

The musculotendon moment arm (MA) is the perpendicular distance from a muscle’s line of action to the rotational center of a joint. Moment arms are important in muscle modeling [1], and thus their accuracy is of great importance. Current in vivo techniques for computing MAs include the center of rotation and tendon excursion methods [1, 2]. The tendon excursion (TE) method relates the change in musculotendon length to an angular change in joint position [3]. This requires two measurements of musculotendon length for each MA computed. Similarly, the center of rotation method requires multiple image-based geometry measurements to compute the MA for a specific joint angle. The TE and center of rotation methods are both prone to measurement error, and thus it is difficult to ascertain the accuracy of the resulting MA. In this paper we present a novel hybrid methodology combining ultrasound (US) and video-based motion capture to compute the Achilles tendon moment arm. An advantage of this approach is that data used to derive the MA are acquired using highly accurate and reliable measurement instruments (i.e, US & motion capture), which may improve the accuracy of the MA estimate. The purpose of this paper is to present the hybrid methodology and validation results based on testing the method using an animal model.


2013 ◽  
Vol 1 (6) ◽  
pp. e00139 ◽  
Author(s):  
Kurt Manal ◽  
Justin D. Cowder ◽  
Thomas S. Buchanan

2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


2015 ◽  
Vol 51 ◽  
pp. 1-7 ◽  
Author(s):  
Irene Cheng ◽  
Amirhossein Firouzmanesh ◽  
Anup Basu

Sign in / Sign up

Export Citation Format

Share Document