Pole Placement for Delay Differential Equations with Time-Periodic Delays Using Galerkin Approximations (CND-20-1378)

Author(s):  
Shanti Swaroop Kandala ◽  
Thomas K. Uchida ◽  
C. P. Vyasarayani

Abstract Many practical systems have inherent time delays that cannot be ignored; thus, their dynamics are described using delay differential equations (DDEs). The Galerkin approximation method is one strategy for studying the stability of time-delay systems. In this work, we consider delays that are time-varying and, specifically, time-periodic. The Galerkin method can be used to obtain a system of ordinary differential equations (ODEs) from a second-order time-periodic DDE in two ways: either by converting the DDE into a second-order time-periodic partial differential equation (PDE) and then into a system of second-order ODEs, or by first expressing the original DDE as two first-order time-periodic DDEs, then converting into a system of first-order time-periodic PDEs, and finally converting into a first-order time-periodic ODE system. The difference between these two formulations in the context of control is presented in this paper. Specifically, we show that the former produces spurious Floquet multipliers at a spectral radius of 1. We also propose an optimization-based framework to obtain feedback gains that stabilize closed-loop control systems with time-periodic delays. The proposed optimization-based framework employs the Galerkin method and Floquet theory, and is shown to be capable of stabilizing systems considered in the literature. Finally, we present experimental validation of our theoretical results using a rotary inverted pendulum apparatus with inherent sensing delays as well as additional time-periodic state-feedback delays that are introduced deliberately.

Author(s):  
Anwar Sadath ◽  
C. P. Vyasarayani

In this paper, we develop Galerkin approximations for determining the stability of delay differential equations (DDEs) with time periodic coefficients and time periodic delays. Using a transformation, we convert the DDE into a partial differential equation (PDE) along with a boundary condition (BC). The PDE and BC we obtain have time periodic coefficients. The PDE is discretized into a system of ordinary differential equations (ODEs) using the Galerkin method with Legendre polynomials as the basis functions. The BC is imposed using the tau method. The resulting ODEs are time periodic in nature; thus, we resort to Floquet theory to determine the stability of the ODEs. We show through several numerical examples that the stability charts obtained from the Galerkin method agree closely with those obtained from direct numerical simulations.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1178-1184
Author(s):  
Shanti S Kandala ◽  
Surya Samukham ◽  
Thomas K Uchida ◽  
C. P. Vyasarayani

The dynamics of time-delay systems are governed by delay differential equations, which are infinite dimensional and can pose computational challenges. Several methods have been proposed for studying the stability characteristics of delay differential equations. One such method employs Galerkin approximations to convert delay differential equations into partial differential equations with boundary conditions; the partial differential equations are then converted into systems of ordinary differential equations, whereupon standard ordinary differential equation methods can be applied. The Galerkin approximation method can be applied to a second-order delay differential equation in two ways: either by converting into a second-order partial differential equation and then into a system of second-order ordinary differential equations (the “second-order Galerkin” method) or by first expressing as two first-order delay differential equations and converting into a system of first-order partial differential equations and then into a first-order ordinary differential equation system (the “first-order Galerkin” method). In this paper, we demonstrate that these subtly different formulation procedures lead to different roots of the characteristic polynomial. In particular, the second-order Galerkin method produces spurious roots near the origin, which must then be identified through substitution into the characteristic polynomial of the original delay differential equation. However, spurious roots do not arise if the first-order Galerkin method is used, which can reduce computation time and simplify stability analyses. We describe these two formulation strategies and present numerical examples to highlight their important differences.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Jin ◽  
Houjun Qi ◽  
Zhanjie Li ◽  
Jianxin Han ◽  
Hua Li

Delay differential equations (DDEs) are widely utilized as the mathematical models in engineering fields. In this paper, a method is proposed to analyze the stability characteristics of periodic DDEs with multiple time-periodic delays. Stability charts are produced for two typical examples of time-periodic DDEs about milling chatter, including the variable-spindle speed milling system with one-time-periodic delay and variable pitch cutter milling system with multiple delays. The simulations show that the results gained by the proposed method are in close agreement with those existing in the past literature. This indicates the effectiveness of our method in terms of time-periodic DDEs with multiple time-periodic delays. Moreover, for milling processes, the proposed method further provides a generalized algorithm, which possesses a good capability to predict the stability lobes for milling operations with variable pitch cutter or variable-spindle speed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hoo Yann Seong ◽  
Zanariah Abdul Majid ◽  
Fudziah Ismail

This paper will consider the implementation of fifth-order direct method in the form of Adams-Moulton method for solving directly second-order delay differential equations (DDEs). The proposed direct method approximates the solutions using constant step size. The delay differential equations will be treated in their original forms without being reduced to systems of first-order ordinary differential equations (ODEs). Numerical results are presented to show that the proposed direct method is suitable for solving second-order delay differential equations.


2007 ◽  
Vol 49 (2) ◽  
pp. 197-211 ◽  
Author(s):  
CH. G. PHILOS

AbstractSecond order nonlinear delay differential equations with positive delays are considered, and sufficient conditions are given that guarantee the existence of positive increasing solutions on the half-line with first order derivatives tending to zero at infinity. The approach is elementary and is essentially based on an old idea which appeared in the author's paper Arch. Math. (Basel)36 (1981), 168–178. The application of the result obtained to second order Emden-Fowler type differential equations with constant delays and, especially, to second order linear differential equations with constant delays, is also presented. Moreover, some (general or specific) examples demonstrating the applicability of the main result are given.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


Sign in / Sign up

Export Citation Format

Share Document