Simulations with a Thermodynamically Consistent Model for Convective Transport in Nanofluids

2021 ◽  
Author(s):  
Eberhard Bänsch ◽  
Sara Faghih-Naini

Abstract A non-homogeneous model is used to simulate convective transport in nanofluids. The model is a thermodynamically consistent version of the celebrated Buongiorno model. We study two situations in detail: flow through a pipe that is heated periodically in time at one lateral wall and a~lid driven cavity with a triangular heat source placed within. Both studies reveal the mechanisms of enhanced heat transfer by nanofluids through thermophoresis: the temperature gradient at the wall leads to a reduced concentration of nanoparticles. This reduces the concentration dependent viscosity of the suspension close to the boundary, which in turn leads to a stronger convective transport.

2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Anil Kumar Patil ◽  
J. S. Saini ◽  
Krishna Kumar

The present study examines the augmentation in heat transfer and friction in a flow through solar air heater duct with discretized broken V-rib roughness. The experimental outcomes pertaining to Reynolds number from 3000 to 17,000, relative gap position (s′/s) from 0.2 to 0.8, relative staggered rib position (p′/p) from 0.2 to 0.8 have been presented and discussed. Discretized broken V-rib roughness brought out considerable enhancement in heat transfer rates over V-rib roughness and smooth duct. Effective efficiency of discretized broken V-rib roughened solar air heater is estimated and geometrical parameters of roughness are optimized with regard to temperature rise parameter and insolation.


2015 ◽  
Vol 46 (7) ◽  
pp. 643-656 ◽  
Author(s):  
Obaid Ullah Mehmood ◽  
Norzieha Mustapha ◽  
Sharidan Shafie ◽  
Muhammad Qasim

Sign in / Sign up

Export Citation Format

Share Document