Computational Assessment of Hemodynamic Significance in Patients with Intramural Anomalous Aortic Origin of the Coronary Artery Using Virtually Derived Fractional Flow Reserve and Downstream Microvascular Resistance

Author(s):  
Atefeh Razavi ◽  
Shagun Sachdeva ◽  
Peter Frommelt ◽  
John LaDisa

Abstract Anomalous aortic origin of a coronary artery (AAOCA) is the second most common cause of sudden cardiac death in young athletes. One of the hypothesized mechanisms of ischemia in these patients is the lateral compression of the anomalous artery with an intramural or interarterial course. The presence of a narrowing in the anomalous artery will cause physiologic changes in downstream resistance that should be included for computational assessment of possible clinical ramifications. In the current study, we created different compression levels, i.e., proximal narrowing, in the intramural course of a representative patient model and calculated virtual fractional flow reserve (vFFR). Models also included the effect of the distal hyperemic microvascular resistance (HMR) on vFFR. Our results were in agreement with similar FFR studies indicating that FFR was increased with increasing HMR, and that different compression levels could have similar FFR depending on the HMR. For example, vFFR at HSR:1.0-1.3 and HMR: 2.30 mmHg/cm/s is 0.68 and close to vFFR at HSR:0.6-0.7 and HMR: 1.6 mmHg/cm/s, which is 0.7. The current findings suggest that functional assessment of anomalous coronary arteries through FFR should consider the vascular resistance distal to the narrowing in addition to the impact of a proximal narrowing and provides computational approaches for implementation of these important considerations.

Author(s):  
Hyun Jung Koo ◽  
Joon-Won Kang ◽  
Soo-Jin Kang ◽  
Jihoon Kweon ◽  
June-Goo Lee ◽  
...  

Abstract Aims To evaluate the impact of coronary artery calcium (CAC) score, minimal lumen area (MLA), and length of coronary artery stenosis on the diagnostic performance of the machine-learning-based computed tomography-derived fractional flow reserve (ML-FFR). Methods and results In 471 patients with coronary artery disease, computed tomography angiography (CTA) and invasive coronary angiography were performed with fractional flow reserve (FFR) in 557 lesions at a single centre. Diagnostic performances of ML-FFR, computational fluid dynamics-based CT-FFR (CFD-FFR), MLA, quantitative coronary angiography (QCA), and visual stenosis grading were evaluated using invasive FFR as a reference standard. Diagnostic performances were analysed according to lesion characteristics including the MLA, length of stenosis, CAC score, and stenosis degree. ML-FFR was obtained by automated feature selection and model building from quantitative CTA. A total of 272 lesions showed significant ischaemia, defined by invasive FFR ≤0.80. There was a significant correlation between CFD-FFR and ML-FFR (r = 0.99, P < 0.001). ML-FFR showed moderate sensitivity and specificity in the per-patient analysis. Diagnostic performances of CFD-FFR and ML-FFR did not decline in patients with high CAC scores (CAC > 400). Sensitivities of CFD-FFR and ML-FFR showed a downward trend along with the increase in lesion length and decrease in MLA. The area under the curve (AUC) of ML-FFR (0.73) was higher than those of QCA and visual grading (AUC = 0.65 for both, P < 0.001) and comparable to those of MLA (AUC = 0.71, P = 0.21) and CFD-FFR (AUC = 0.73, P = 0.86). Conclusion ML-FFR showed comparable results to MLA and CFD-FFR for the prediction of lesion-specific ischaemia. Specificities and accuracies of CFD-FFR and ML-FFR decreased with smaller MLA and long lesion length.


2019 ◽  
Vol 41 (17) ◽  
pp. 1665-1672 ◽  
Author(s):  
Giuseppe Di Gioia ◽  
Bernard De Bruyne ◽  
Mariano Pellicano ◽  
Jozef Bartunek ◽  
Iginio Colaiori ◽  
...  

Abstract Aims Fractional flow reserve (FFR) has never been investigated in patients with reduced ejection fraction and associated coronary artery disease (CAD). We evaluated the impact of FFR on the management strategies of these patients and related outcomes. Methods and results From 2002 to 2010, all consecutive patients with left ventricular ejection fraction (LVEF) ≤50% undergoing coronary angiography with ≥1 intermediate coronary stenosis [diameter stenosis (DS)% 50–70%] treated based on angiography (Angiography-guided group) or according to FFR (FFR-guided group) were screened for inclusion. In the FFR-guided group, 433 patients were matched with 866 contemporary patients of the Angiography-guided group. For outcome comparison, 617 control patients with LVEF >50% were included. After FFR, stenotic vessels per patient were significantly downgraded compared with the Angiography-guided group (1.43 ± 0.98 vs. 1.97 ± 0.84; P < 0.001). This was associated with lower revascularization rate (52% vs. 62%; P < 0.001) in the FFR-guided vs. the Angiography-guided group. All-cause death at 5 years of follow-up was significantly lower in the FFR-guided as compared with Angiography-guided group [22% vs. 31%. HR (95% CI) 0.64 (0.51–0.81); P < 0.001]. Similarly, rate of major adverse cardiovascular and cerebrovascular events (MACCE: composite of all-cause death, myocardial infarction, revascularization, and stroke) was significantly lower in the FFR-guided group [40% vs. 46% in the Angiography-guided group. HR (95% CI) 0.81 (0.67–0.97); P = 0.019]. Higher rates of death and MACCE were observed in patients with reduced LVEF compared with the control cohort. Conclusions In patients with reduced LVEF and CAD, FFR-guided revascularization was associated with lower rates of death and MACCE at 5 years as compared with the Angiography-guided strategy. This beneficial impact was observed in parallel with less coronary artery bypass grafting and more patients deferred to percutaneous coronary intervention or medical therapy.


Sign in / Sign up

Export Citation Format

Share Document