On the Generation of Tuned Test Problems for Stress Concentrations

Author(s):  
Glenn Sinclair ◽  
Ajay A Kardak

Abstract When stress concentration factors are not available in handbooks, finite element analysis has become the predominant method for determining their values. For such determinations, there is a need to know if they have sufficient accuracy. Tuned Test Problems can provide a way of assessing the accuracy of stress concentration factors found with finite elements. Here we offer a means of constructing such test problems for stress concentrations within boundaries that have local constant radii of curvature. These problems are tuned to their originating applications by sharing the same global geometries and having slightly higher peak stresses. They also have exact solutions, thereby enabling a precise determination of the errors incurred in their finite element analysis.

2007 ◽  
Vol 353-358 ◽  
pp. 1995-1998
Author(s):  
Byeong Choon Goo

The purpose of this paper is to develop an estimation formula of stress concentration factors of butt-welded components under tensile loading. To investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints, butt-welded specimens were made by CO2 gas metal arc welding. And the three main parameters, the toe radius, flank angle and bead height were measured by a profile measuring equipment. By using the measured data, the influence of three parameters on the stress concentration factors was investigated by a finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. According to the simulation results, a formula to estimate the stress concentration factors of butt-weld welded structures was proposed and the estimated concentration factors from the formula were compared with the results obtained by the finite element analysis. The two results are in a good agreement.


Author(s):  
Carlos A. Pereira ◽  
Paulo P. Silva ◽  
Anto´nio F. Mateus ◽  
Joel A. Witz

This paper presents the results of investigations into the mechanics and failure modes of structural details usually encountered in lightweight marine structures. The structural analyses are performed using non-linear finite element analysis. The stress concentration factors and expected fatigue lives of the as designed and the as built structural details are evaluated and alternative configurations are discussed with the aim of improving the designs for production.


1970 ◽  
Vol 40 (2) ◽  
pp. 137-141
Author(s):  
R. Nagendra Babu ◽  
K. V. Ramana ◽  
K. Mallikarjuna Rao

Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors.Keywords: Stress Concentration Factors; FiniteElement Analysis; ANSYS.DOI: 10.3329/jme.v40i2.5355Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 137-141


1999 ◽  
Vol 121 (3) ◽  
pp. 252-256 ◽  
Author(s):  
C. S. Sloan ◽  
M. D. Cowell ◽  
T. F. Lehnhoff

Stress concentration factors have been determined for large hole to small hole diameter ratios (D/d) of 10 to 50 for two holes in an infinitely wide tension-loaded panel. Finite element analysis was used to model the system of two holes in a plate that approximates the infinitely wide and tall case. Both the D/d ratio and edge to edge hole spacing were examined for hole placement along an axis perpendicular to the direction of the tension field. It was found for large D/d ratios that the stress concentration factor was only dependent on the distance between the hole edges divided by the large hole diameter. For the configurations analyzed, the stress concentration factors varied from approximately 3 to 11.


Author(s):  
Andrzej T. Strzelczyk ◽  
San S. Ho

In the ASME Code fatigue evaluation, the total stress at the critical region of a structure is often calculated as a product of nominal stress and the SCF (stress concentration factor). The SCF values are usually taken from technical material like the Welding Research Bulletin [1] or Peterson’s Stress Concentration Factors book [2]. However, the published data do not cover all stress concentration cases; furthermore, many results are ambiguous or with limited accuracy. This paper recommends direct evaluation of the stress concentration by finite element analysis. It presents examples of automatic generation of finite element models which apply to practical cases. The examples show that the finite element method is an effective way for stress concentration assessment; the method can give accurate (convergent) results for a wide variety of cases of geometry and loading conditions.


1972 ◽  
Vol 94 (3) ◽  
pp. 815-824 ◽  
Author(s):  
J. C. Gerdeen

An approximate theoretical analysis is presented for the determination of stress concentration factors in thick walled cylinders with sideholes and crossholes. The cylinders are subjected to both internal pressure and external shrink-fit pressure. Stress concentration factors are plotted as functions of the geometrical ratios of outside diameter-to-bore diameter, and bore diameter-to-sidehole diameter. Theoretical results are compared to experimental values available in the literature and results of experiments described in a separate paper.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


Sign in / Sign up

Export Citation Format

Share Document